Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Quantitative identification of functional connectivity disturbances in neuropsychiatric lupus based on resting-state fMRI: a robust machine learning approach

Simos Nikolaos-Ioannis, Dimitriadis Stavros, Kavroulakis Eleftherios, Manikis Georgios, Bertsias George, Simos Panagiotis, Maris Thomas G., Papadaki Efrosini

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/95461A25-6793-44B2-86C6-10CB0B937482-
Αναγνωριστικόhttps://doi.org/10.3390/brainsci10110777-
Αναγνωριστικόhttps://www.mdpi.com/2076-3425/10/11/777-
Γλώσσαen-
Μέγεθος18 pagesen
ΤίτλοςQuantitative identification of functional connectivity disturbances in neuropsychiatric lupus based on resting-state fMRI: a robust machine learning approachen
ΔημιουργόςSimos Nikolaos-Ioannisen
ΔημιουργόςΣιμος Νικολαος-Ιωαννηςel
ΔημιουργόςDimitriadis Stavrosen
ΔημιουργόςKavroulakis Eleftheriosen
ΔημιουργόςManikis Georgiosen
ΔημιουργόςΜανικης Γεωργιοςel
ΔημιουργόςBertsias Georgeen
ΔημιουργόςSimos Panagiotisen
ΔημιουργόςMaris Thomas G.en
ΔημιουργόςPapadaki Efrosinien
ΕκδότηςMDPIen
ΠερίληψηNeuropsychiatric systemic lupus erythematosus (NPSLE) is an autoimmune entity comprised of heterogenous syndromes affecting both the peripheral and central nervous system. Research on the pathophysiological substrate of NPSLE manifestations, including functional neuroimaging studies, is extremely limited. The present study examined person-specific patterns of whole-brain functional connectivity in NPSLE patients (n = 44) and age-matched healthy control participants (n = 39). Static functional connectivity graphs were calculated comprised of connection strengths between 90 brain regions. These connections were subsequently filtered through rigorous surrogate analysis, a technique borrowed from physics, novel to neuroimaging. Next, global as well as nodal network metrics were estimated for each individual functional brain network and were input to a robust machine learning algorithm consisting of a random forest feature selection and nested cross-validation strategy. The proposed pipeline is data-driven in its entirety, and several tests were performed in order to ensure model robustness. The best-fitting model utilizing nodal graph metrics for 11 brain regions was associated with 73.5% accuracy (74.5% sensitivity and 73% specificity) in discriminating NPSLE from healthy individuals with adequate statistical power. Closer inspection of graph metric values suggested an increased role within the functional brain network in NSPLE (indicated by higher nodal degree, local efficiency, betweenness centrality, or eigenvalue efficiency) as compared to healthy controls for seven brain regions and a reduced role for four areas. These findings corroborate earlier work regarding hemodynamic disturbances in these brain regions in NPSLE. The validity of the results is further supported by significant associations of certain selected graph metrics with accumulated organ damage incurred by lupus, with visuomotor performance and mental flexibility scores obtained independently from NPSLE patients. en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2021-04-21-
Ημερομηνία Δημοσίευσης2020-
Θεματική ΚατηγορίαNeuropsychiatric systemic lupus erythematosusen
Θεματική ΚατηγορίαResting-state functional MRI (rs-fMRI)en
Θεματική ΚατηγορίαGraph theoryen
Θεματική ΚατηγορίαFunctional connectivityen
Θεματική ΚατηγορίαSurrogate dataen
Θεματική ΚατηγορίαMachine learningen
Θεματική ΚατηγορίαVisuomotor abilityen
Θεματική ΚατηγορίαMental flexibilityen
Βιβλιογραφική ΑναφοράN. J. Simos, S. I. Dimitriadis, E. Kavroulakis, G. C. Manikis, G. Bertsias, P. Simos, T. G. Maris, and E. Papadaki, “Quantitative identification of functional connectivity disturbances in neuropsychiatric lupus based on resting-state fMRI: a robust machine learning approach,” Brain Sci., vol. 10, no. 11, Oct. 2020. doi: 10.3390/brainsci10110777en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά