Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

AI in medical imaging informatics: current challenges and future directions

Panayides Andreas S., Amini Amir, Filipovic Nenad, Sharma Ashish, Tsaftaris, Sotirios A, Young Alistair, Foran David, Do Nhan, Golemati Spyretta, Kurc Tahsin, Huang Kun, Nikita Konstantina, Veasey Ben P., Zervakis Michail, Saltz Joel H. , Pattichis, Constantinos S

Simple record


URIhttp://purl.tuc.gr/dl/dias/7A180DD9-F903-4802-9312-9EAE0372DF0D-
Identifierhttps://doi.org/10.1109/JBHI.2020.2991043-
Identifierhttps://ieeexplore.ieee.org/document/9103969-
Languageen-
Extent21 pagesen
Extent3,42 megabytesen
TitleAI in medical imaging informatics: current challenges and future directionsen
CreatorPanayides Andreas S.en
CreatorAmini Amiren
Creator Filipovic Nenaden
CreatorSharma Ashishen
CreatorTsaftaris, Sotirios Aen
CreatorYoung Alistairen
CreatorForan Daviden
CreatorDo Nhanen
CreatorGolemati Spyrettaen
CreatorKurc Tahsinen
CreatorHuang Kunen
CreatorNikita Konstantinaen
CreatorVeasey Ben P.en
CreatorZervakis Michailen
CreatorΖερβακης Μιχαηλel
CreatorSaltz Joel H. en
CreatorPattichis, Constantinos Sen
PublisherInstitute of Electrical and Electronics Engineersen
Content SummaryThis paper reviews state-of-the-art research solutions across the spectrum of medical imaging informatics, discusses clinical translation, and provides future directions for advancing clinical practice. More specifically, it summarizes advances in medical imaging acquisition technologies for different modalities, highlighting the necessity for efficient medical data management strategies in the context of AI in big healthcare data analytics. It then provides a synopsis of contemporary and emerging algorithmic methods for disease classification and organ/ tissue segmentation, focusing on AI and deep learning architectures that have already become the de facto approach. The clinical benefits of in-silico modelling advances linked with evolving 3D reconstruction and visualization applications are further documented. Concluding, integrative analytics approaches driven by associate research branches highlighted in this study promise to revolutionize imaging informatics as known today across the healthcare continuum for both radiology and digital pathology applications. The latter, is projected to enable informed, more accurate diagnosis, timely prognosis, and effective treatment planning, underpinning precision medicine.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2021-07-14-
Date of Publication2020-
SubjectMedical imagingen
SubjectImage analysisen
SubjectImage classificationen
SubjectImage processingen
SubjectImage segmentationen
SubjectImage visualizationen
SubjectIntegrative analyticsen
SubjectMachine learningen
SubjectDeep learningen
SubjectBig dataen
Bibliographic CitationA. S. Panayides, A. Amini, N. D. Filipovic, A. Sharma, S. A. Tsaftaris, A. Young, D. Foran, N. Do, S. Golemati, T. Kurc, K. Huang, K. S. Nikita, B. P. Veasey, M. Zervakis, J. H. Saltz, and C. S. Pattichis, “AI in medical imaging informatics: current challenges and future directions,” IEEE J. Biomed. Health Inform., vol. 24, no. 7, pp. 1837–1857, Jul. 2020. doi: 10.1109/JBHI.2020.2991043en

Available Files

Services

Statistics