Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Automatic recognition of personality profiles using EEG functional connectivity during emotional processing

Dacosta-Aguayo Rosalia, Klados Manousos A., Konstantinidi Panagiota, Kostaridou Vasiliki-Despoina, Vinciarelli, Alessandro, Zervakis Michail

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/FBB15CB0-4FB7-48ED-A400-334B5A6A699A-
Αναγνωριστικόhttps://doi.org/10.3390/brainsci10050278-
Αναγνωριστικόhttps://www.mdpi.com/2076-3425/10/5/278/htm-
Γλώσσαen-
Μέγεθος15 pagesen
Μέγεθος1,46 megabytesen
ΤίτλοςAutomatic recognition of personality profiles using EEG functional connectivity during emotional processingen
ΔημιουργόςDacosta-Aguayo Rosaliaen
ΔημιουργόςKlados Manousos A.en
ΔημιουργόςKonstantinidi Panagiotaen
ΔημιουργόςKostaridou Vasiliki-Despoinaen
ΔημιουργόςVinciarelli, Alessandroen
ΔημιουργόςZervakis Michailen
ΔημιουργόςΖερβακης Μιχαηλel
ΕκδότηςMDPIen
ΠερίληψηPersonality is the characteristic set of an individual’s behavioral and emotional patterns that evolve from biological and environmental factors. The recognition of personality profiles is crucial in making human–computer interaction (HCI) applications realistic, more focused, and user friendly. The ability to recognize personality using neuroscientific data underpins the neurobiological basis of personality. This paper aims to automatically recognize personality, combining scalp electroencephalogram (EEG) and machine learning techniques. As the resting state EEG has not so far been proven efficient for predicting personality, we used EEG recordings elicited during emotion processing. This study was based on data from the AMIGOS dataset reflecting the response of 37 healthy participants. Brain networks and graph theoretical parameters were extracted from cleaned EEG signals, while each trait score was dichotomized into low- and high-level using the k-means algorithm. A feature selection algorithm was used afterwards to reduce the feature-set size to the best 10 features to describe each trait separately. Support vector machines (SVM) were finally employed to classify each instance. Our method achieved a classification accuracy of 83.8% for extraversion, 86.5% for agreeableness, 83.8% for conscientiousness, 83.8% for neuroticism, and 73% for openness. en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2021-08-06-
Ημερομηνία Δημοσίευσης2020-
Θεματική ΚατηγορίαBig-Five factor modelen
Θεματική ΚατηγορίαBrain functional connectivityen
Θεματική ΚατηγορίαElectroencephalogram signal processingen
Θεματική ΚατηγορίαEmotional processingen
Θεματική ΚατηγορίαNeuroscienceen
Θεματική ΚατηγορίαPersonality detectionen
Βιβλιογραφική ΑναφοράM. A. Klados, P. Konstantinidi, R. Dacosta-Aguayo, V.-D. Kostaridou, A. Vinciarelli, and M. Zervakis, “Automatic recognition of personality profiles using EEG functional connectivity during emotional processing,” Brain Sci., vol. 10, no. 5, May 2020. doi: 10.3390/brainsci10050278en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά