Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Εφαρμογή των ιδιοτήτων των δενδριτών στη μηχανική μάθηση

Pinitas Kosmas

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/43321662-C403-4226-A0E3-83CF6B2EE0AA
Έτος 2021
Τύπος Διπλωματική Εργασία
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά Κοσμάς Πινήτας, "Εφαρμογή των ιδιοτήτων των δενδριτών στη μηχανική μάθηση", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2021 https://doi.org/10.26233/heallink.tuc.90049
Εμφανίζεται στις Συλλογές

Περίληψη

Τα υπάρχοντα μοντέλα βαθιάς μάθησης επιτυγχάνουν αξιοσημείωτη απόδοση όταν εκπαιδεύονται σε μεγάλα σύνολα δεδομένων, Ωστόσο απόδοση των μοντέλων αυτών μειώνεται σημαντικά όταν μαθαίνουν σταδιακά νέες κλάσεις λόγω της τάσης τους να ξεχνούν τις γνώσεις που έχουν αποκτηθεί από προηγούμενα δεδομένα, το φαινόμενο αυτό ονομάζεται καταστροφική λήθη (catastrophic forgetting). Οι Αυτοοργανωτικοί Χάρτες μπορούν να μοντελοποιήσουν τον χώρο εισόδου χρησιμοποιώντας constrained-kmeans διασφαλίζοντας τη διατήρηση των προηγούμενων γνώσεων. Ως εκ τούτου, εισάγουμε τον Δενδριτικό-Αυτοοργανοτικό Χάρτη που αποτελείται από ένα μόνο επίπεδο Χαρτών Αυτοοργάνωσης, οι οποίοι εξάγουν μοτίβα από συγκεκριμένες περιοχές του χώρου εισόδου και ένα πίνακα συσχέτισης που εκτιμά τη συσχέτιση μεταξύ μονάδων και ετικετών. Η μονάδα που ταιριάζει καλύτερα σε ένα μοτίβο εισόδου επιλέγεται με βάση τον κανόνα της μέγιστου συνημιτόνου, ενώ η αμοιβαία πληροφορία χρησιμοποιείται για συμπερασμό. Η μέθοδος μας εκτελεί ταξινόμηση χωρίς επίβλεψη, καθώς δεν γίνεται χρήση των ετικετών κατά την ενημέρωση των διανυσμάτων βάρους των χαρτών. Τα αποτελέσματα υποδεικνύουν ότι ο προτεινόμενος αλγόριθμος υπερτερεί πολλών αλγορίθμων συνεχούς μάθησης στα σύνολα δεδομένων όπως το Split-MNIST και το Split-CIFAR-10.

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά