Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Autonomous drone navigation for landmark position estimation using reinforcement learning

Galanis Michalis

Simple record


URIhttp://purl.tuc.gr/dl/dias/8E9F870F-EF8B-42A0-AFC6-488BF38B90DF-
Identifierhttps://doi.org/10.26233/heallink.tuc.90434-
Languageen-
Extent108 pagesen
Extent6.2 megabytesen
ExtentA4 (210x297mm)en
TitleAutonomous drone navigation for landmark position estimation using reinforcement learningen
TitleΑυτόνομη πλοήγηση drone για εκτίμηση θέσης διακριτικών με χρήση ενισχυτικής μάθησηςel
CreatorGalanis Michalisen
CreatorΓαλανης Μιχαληςel
Contributor [Thesis Supervisor]Lagoudakis Michailen
Contributor [Thesis Supervisor]Λαγουδακης Μιχαηλel
Contributor [Committee Member]Zervakis Michailen
Contributor [Committee Member]Ζερβακης Μιχαηλel
Contributor [Committee Member]Partsinevelos Panagiotisen
Contributor [Committee Member]Παρτσινεβελος Παναγιωτηςel
PublisherΠολυτεχνείο Κρήτηςel
PublisherTechnical University of Creteen
Academic UnitTechnical University of Crete::School of Electrical and Computer Engineeringen
Academic UnitΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστώνel
Content SummaryUnmanned aerial vehicles (UAVs) have been increasingly used for critical and challenging applications, which often require a substantial level of autonomy. Several approaches have been investigated to create autonomous navigation systems such as Simultaneous Localization and Mapping (SLAM) using real-time mapping and position estimation. Reinforcement leaning (RL) is a promising alternative that focuses on learning to perform a task through a trial-and-error procedure, in which an agent interacts with its environment and receives continuous feedback based on the actions taken, with no access to any information about the environment itself. Eventually, the agent’s objective is to find the best possible sequence of actions that lead to the maximum total reward in the long term. This thesis explores a mapless approach to UAV autonomous navigation in completely unknown 3D environments using deep reinforcement learning (DRL), a reinforcement learning approach that incorporates deep learning techniques (deep neural networks) to overcome dimensionality limitations. The goal of the agent is to safely navigate through this unknown environment, so as to detect and approach a predefined set of ArUco markers (landmarks) placed within the environment. The unknown environments are dynamically created and contain a number of procedurally generated obstacles. We evaluate our agent in five different environment profiles with increasing difficulty level and observe how environment complexity affects training performance. Results show that deep reinforcement learning can be effective and can be successfully used for autonomous navigation missions. The entire project was implemented using the Robot Operating System (ROS) platform within the Gazebo robot simulator environment.en
Content SummaryΤα μη επανδρωμένα αεροσκάφη (Unmanned Aerial Vehicles, UAVs) χρησιμοποιούνται ολοένα και περισσότερο για κρίσιμες και απαιτητικές εφαρμογές, οι οποίες συχνά απαιτούν ένα σημαντικό επίπεδο αυτονομίας. ‘ ́Εχουν διερευνηθεί διάφορες προσεγγίσεις για τη δημιουργία συστημάτων αυτόνομης πλοήγησης, όπως ο ταυτόχρονος εντοπισμός και χαρτογράφηση (SLAM) που υλοποιεί σε πραγματικό χρόνο χαρτογράφηση και εκτίμηση θέσης. Η Ενισχυτική Μάθηση (Reinforcement Learning, RL) θεωρείται μια πολλά υποσχόμενη εναλλακτική λύση που επικεντρώνεται στη μάθηση κάποιου έργου μέσω μιας διαδικασίας δοκιμής και σφάλματος, στην οποία ένας πράκτορας αλληλεπιδρά με το περιβάλλον του και λαμβάνει συνεχή αξιολόγηση εξαρτώμενη από τις ενέργειες που επιλέγει, χωρίς ωστόσο να έχει πρόσβαση σε πληροφορίες για το ίδιο το περιβάλλον. Εν τέλει, ο στόχος του πράκτορα είναι να βρει την καλύτερη δυνατή ακολουθία ενεργειών που θα εξασφαλίσουν τη μέγιστη συνολική ανταμοιβή μακροπρόθεσμα. Η παρούσα διπλωματική εργασία διερευνά μια προσέγγιση αυτόνομης πλοήγησης αεροσκαφών (χωρίς χάρτη) σε εντελώς άγνωστα τρισδιάστατα περιβάλλοντα χρησιμοποιώντας βαθιά ενισχυτική μάθηση (Deep Reinforcement Learning, DRL), μια προσέγγιση ενισχυτικής μάθησης που ενσωματώνει τεχνικές βαθιάς μάθησης (βαθιά νευρωνικά δίκτυα) για να αντιμετωπιστούν οι περιορισμοί διαστατικότητας. Ο στόχος του πράκτορα είναι να περιηγηθεί με ασφάλεια στο άγνωστο περιβάλλον, ώστε να εντοπίσει και να προσεγγίσει έναν προκαθορισμένο αριθμό διακριτικών δεικτών ArUco που είναι τοποθετημένοι μέσα στο περιβάλλον. Τα άγνωστα περιβάλλοντα δημιουργούνται δυναμικά και συμπεριλαμβάνουν έναν πλήθος από εμπόδια παραγόμενα με αυτοματοποιημένο τρόπο. Αξιολογούμε τον πράκτορας μας σε πέντε διαφορετικά προφίλ περιβαλλόντων με αυξανόμενο επίπεδο δυσκολίας και παρατηρούμε πως η πολυπλοκότητα του περιβάλλοντος επηρεάζει την απόδοση της μάθησης. Τα αποτελέσματα δείχνουν ότι η βαθιά ενισχυτική μάθηση μπορεί να είναι αποτελεσματική και μπορεί να χρησιμοποιηθεί επιτυχώς σε αποστολές αυτόνομης πλοήγησης. Η εργασία στο σύνολό της έχει υλοποιηθεί μέσω της πλατφόρμας Robot Operating System (ROS) στο περιβάλλον ρομποτικής προσομοίωσης Gazebo.el
Type of ItemΔιπλωματική Εργασίαel
Type of ItemDiploma Worken
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2021-10-11-
Date of Publication2021-
Subject3D environmenten
SubjectArtificial intelligenceen
SubjectArtificial neural networken
SubjectArUco markeren
SubjectArUco marker detectionen
SubjectArUco tagen
SubjectAutonomous UAV navigationen
SubjectDeep learningen
SubjectDeep neural networken
SubjectDeep reinforcement learningen
SubjectDQNen
SubjectDroneen
SubjectDrone aircraften
SubjectDynamic environmenten
SubjectEnvironmenten
SubjectFully connected layeren
SubjectGazeboen
SubjectInertial measurement uniten
SubjectKerasen
SubjectLandmark position estimationen
SubjectLIDARen
SubjectMachine visionen
SubjectNeural networken
SubjectObstacle avoidanceen
SubjectObstaclesen
SubjectOpenAI Gymen
SubjectOptical cameraen
SubjectQ-Learningen
SubjectReinforcement learningen
SubjectRewarden
SubjectROSen
SubjectROS transformationsen
SubjectSensorsen
SubjectSONARen
SubjectTarget approachen
SubjectTensorflowen
SubjectTrainingen
SubjectUnknown environmenten
SubjectUnmanned eerial vehicleen
SubjectValue function approximationen
SubjectAutonomous drone navigationen
Bibliographic CitationMichalis Galanis, "Autonomous drone navigation for landmark position estimation using reinforcement learning", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2021en
Bibliographic CitationΜιχάλης Γαλάνης, "Αυτόνομη πλοήγηση drone για εκτίμηση θέσης διακριτικών με χρήση ενισχυτικής μάθησης", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2021el

Available Files

Services

Statistics