Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Estimation of sparse channels in 5G wireless systems

Paktitis Spyridon

Simple record


URIhttp://purl.tuc.gr/dl/dias/BA2AB2CA-1120-4B65-B325-30F5077C935F-
Identifierhttps://doi.org/10.26233/heallink.tuc.91437-
Languageen-
Extent79 pagesen
Extent3.4 megabytesen
TitleEstimation of sparse channels in 5G wireless systemsen
TitleΕκτίμηση αραιών καναλιών σε ασύρματα συστήματα 5ης γενιάςel
CreatorPaktitis Spyridonen
CreatorΠακτιτης Σπυριδωνel
Contributor [Thesis Supervisor]Liavas Athanasiosen
Contributor [Thesis Supervisor]Λιαβας Αθανασιοςel
Contributor [Committee Member]Karystinos Georgiosen
Contributor [Committee Member]Καρυστινος Γεωργιοςel
Contributor [Committee Member]Μπερμπερίδης, Κώσταςen
PublisherΠολυτεχνείο Κρήτηςel
PublisherTechnical University of Creteen
Academic UnitTechnical University of Crete::School of Electrical and Computer Engineeringen
Academic UnitΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστώνel
Content SummaryIn this Diploma Thesis, we study a novel Channel State Information on the Transmitter side (CSIT) algorithm for the estimation of the CSIT in a multiuser, Frequency Division Multiplexing (FDD), massive MIMO wireless system. The main characteristic of a massive MIMO system is the large number of antennas at the Base Station (BS). This fact puts significant difficulties at the channel estimation process but offers significant benefits regarding spectral and energy efficiency, reliability, and capacity. First, we present the concept of Compressive Sensing and the important research results of J.A. Tropp and A.C. Gilbert, including an algorithm for sparse signal recovery from random measurements via Orthogonal Matching Pursuit. In their work, Tropp and Gilbert propose a remarkably simple algorithm for tackling signal estimation when dealing with sparse channel matrices. Then, we familiarise ourselves with the Angular Domain representation of signals, mainly based on the book by D. Tse and P. Viswanath. Last, we present an algorithm for efficient channel estimation in Massive MIMO FDD systems proposed in a paper by X. Rao and V. K. N. Lau. We also studied the work of J. C. Shen, J. Zhang, K. C. Chen and K. B. Lataief (see also the work of M. Massod, L.H. Afify and T.Y. Al-Naffouri). We apply and test the algorithm in various scenarios of interest, revealing that efficient massive MIMO channel estimation is possible under the hypothesis of sparsity in the angular domain. en
Type of ItemΔιπλωματική Εργασίαel
Type of ItemDiploma Worken
Licensehttp://creativecommons.org/licenses/by-nc/4.0/en
Date of Item2022-02-09-
Date of Publication2022-
SubjectSparse channel estimationen
SubjectOrthogonal Matching Pursuit (OMP)en
SubjectAngular Domain representation of signalsen
SubjectMassive MIMOen
Bibliographic CitationSpyridon Paktitis, "Estimation of Sparse Channels in 5G Wireless Systems", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2022en
Bibliographic CitationΣπυρίδων Πακτίτης, "Εκτίμηση αραιών καναλιών σε ασύρματα συστήματα 5ης γενιάς", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2022el

Available Files

Services

Statistics