URI | http://purl.tuc.gr/dl/dias/B95A23E2-1676-42FB-A0B1-25DB4F07A1F9 | - |
Αναγνωριστικό | https://doi.org/10.1016/j.chemosphere.2020.128688 | - |
Αναγνωριστικό | https://www.sciencedirect.com/science/article/pii/S0045653520328861 | - |
Γλώσσα | en | - |
Μέγεθος | 11 pages | en |
Τίτλος | Techno-economic assessment of landfill gas (LFG) to electric energy: selection of the optimal technology through field-study and model simulation | en |
Δημιουργός | Manasaki Virginia | en |
Δημιουργός | Μανασακη Βιργινια | el |
Δημιουργός | Palogos Ioannis | en |
Δημιουργός | Παλογος Ιωαννης | el |
Δημιουργός | Chourdakis Ioannis | en |
Δημιουργός | Χουρδακης Ιωαννης | el |
Δημιουργός | Tsafantakis Konstantinos | en |
Δημιουργός | Τσαφαντακης Κωνσταντινος | el |
Δημιουργός | Gikas Petros | en |
Δημιουργός | Γκικας Πετρος | el |
Εκδότης | Elsevier | en |
Περίληψη | Landfill Gas (LFG) is a renewable energy resource. LFG quality and production rate are determined factors for the selection of the optimal technology for electric energy production. Environmental legislation, flue gas emissions, carbon footprint and maturity of technology should also be considered. The most common process for electric energy production from LFG is by Internal Combustion Engines (ICEs), which require approximately 40% minimum methane concentration. Microturbines have been also employed for electric energy production from LFG, requiring minimum methane concentration of approximately 35%. On the other hand, a relatively novel process, Gradual Oxidation (GO), can produce electric energy from LFG at methane concentrations as low as 1.5%. The present study examines the applicability of the above technologies for electric energy production from LFG, from various cells, at the landfill of Heraklion, Crete, Greece, from an economic point of view. The LandGEM (EPA) simulation model has been modified to account for the long them reduction of methane concentration in LFG, and has been adjusted, based on field measurements. The Net Present Values (NPVs) (for 15-years and 25-years from installation) for three distinct scenarios, with total electric energy production capacity of 800 kW, per scenario (using just ICEs, combination of ICE and GO or just microturbines), were calculated. The results indicated that the most profitable scenario (among the ones studied) was the one with the use of two microturbines with capacity 400 kW, each, yielding 15-years and 25-yeasr NPVs of 2.68 and 3.69 M€, respectively, for initial capital investment of 2.24 M€. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2022-03-23 | - |
Ημερομηνία Δημοσίευσης | 2021 | - |
Θεματική Κατηγορία | Landfill biogas | en |
Θεματική Κατηγορία | Waste to energy | en |
Θεματική Κατηγορία | LandGEM | en |
Θεματική Κατηγορία | Internal combustion engine | en |
Θεματική Κατηγορία | Gradual oxidizer | en |
Θεματική Κατηγορία | Microturbine | en |
Βιβλιογραφική Αναφορά | V. Manasaki, I. Palogos, I. Chourdakis, K. Tsafantakis, and P. Gikas, “Techno-economic assessment of landfill gas (LFG) to electric energy: selection of the optimal technology through field-study and model simulation,” Chemosphere, vol. 269, Apr. 2021, doi: 10.1016/j.chemosphere.2020.128688. | en |