Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Improving the efficiency and enhancing the capacity of the PyPLT (Python Preference Learning Toolbox) software tool

Chaviara Antonia-Chrysovalanto

Simple record


URIhttp://purl.tuc.gr/dl/dias/5362BAD7-E2DE-4834-9BF9-403E30161023-
Identifierhttps://doi.org/10.26233/heallink.tuc.92073-
Languageen-
Extent102 pagesen
Extent4.2 megabytesen
TitleImproving the efficiency and enhancing the capacity of the PyPLT (Python Preference Learning Toolbox) software toolen
TitleΒελτίωση της αποδοτικότητας και εμπλουτισμός του εργαλείου λογισμικού PyPLT (Python Preference Learning Toolbox)el
CreatorChaviara Antonia-Chrysovalantoen
CreatorΧαβιαρα Αντωνια-Χρυσοβαλαντοel
Contributor [Thesis Supervisor]Lagoudakis Michailen
Contributor [Thesis Supervisor]Λαγουδακης Μιχαηλel
Contributor [Committee Member]Chalkiadakis Georgiosen
Contributor [Committee Member]Χαλκιαδακης Γεωργιοςel
Contributor [Committee Member]Yannakakis, Georgios Nen
PublisherΠολυτεχνείο Κρήτηςel
PublisherTechnical University of Creteen
Academic UnitTechnical University of Crete::School of Electrical and Computer Engineeringen
Academic UnitΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστώνel
Content SummaryResearch has demonstrated that ordinal approaches to the analysis of subjective values such as emotions, leads to more reliable predictive models. Preference learning is the machine learning subfield, which deals with datasets including ordinal relations. Preference learning algorithms have proven to be powerful in creating efficient computational models from ordinal data. The Python Preference Learning Toolbox facilitates ordinal data processing and preference learning. The software is open source, available to a wide range of researchers and includes popular algorithms and data processing methods. At first, the toolbox is tested with synthetic datasets in order to identify possible malfunctions during the stages of data processing and modelling. An optimization of the current features, along with the addition of evaluation metrics and preference learning techniques are performed in order to augment the functionality of the software. A user survey follows, in order to test the usability of the toolbox. The results confirm that PyPLT is simple, easy to use, for both novice and experienced researchers. Furthermore, it is capable of producing reliable predictive models provided the necessary data processing and algorithm parameterization which is offered by the toolbox. en
Content SummaryΗ έρευνα έχει δείξει ότι οι τακτικές προσεγγίσεις στην ανάλυση υποκειμενικών αξιών, όπως τα συναισθήματα, οδηγούν στην κατασκευή πιο αξιόπιστων προγνωστικών μοντέλων. Η εκμάθηση προτιμήσεων είναι το πεδίο της μηχανικής μάθησης, το οποίο ασχολείται με τακτικά (ordinal) δεδομένα. Οι αλγόριθμοι εκμάθησης προτιμήσεων έχουν αποδειχθεί σημαντικοί στη δημιουργία αποδοτικών υπολογιστικών μοντέλων από τακτικά δεδομένα. Το Python Preference Learning Toolbox διευκολύνει την επεξεργασία τακτικών δεδομένων και την εκμάθηση προτιμήσεων. Το λογισμικό είναι ανοιχτού κώδικα, διαθέσιμο σε ένα ευρύ φάσμα ερευνητών, ενώ περιλαμβάνει δημοφιλείς αλγόριθμους και μεθόδους επεξεργασίας δεδομένων. Αρχικά, η εργαλειοθήκη δοκιμάζεται με συνθετικά σύνολα δεδομένων προκειμένου να εντοπιστούν πιθανές δυσλειτουργίες κατά τα στάδια επεξεργασίας δεδομένων και μοντελοποίησης. Πραγματοποιείται βελτιστοποίηση στα υπάρχοντα χαρακτηριστικά, μαζί με την προσθήκη μετρήσεων αξιολόγησης και τεχνικών εκμάθησης προτιμήσεων, προκειμένου να ενισχυθεί η λειτουργικότητα του λογισμικού. Ακολουθεί έρευνα χρηστών, προκειμένου να ελεγχθεί η χρηστικότητα της εργαλειοθήκης. Τα αποτελέσματα επιβεβαιώνουν ότι το PyPLT είναι απλό, εύκολο στη χρήση, τόσο για αρχάριους όσο και για έμπειρους ερευνητές. Επιπλέον, είναι σε θέση να παράγει αξιόπιστα μοντέλα πρόβλεψης με την απαραίτητη επεξεργασία δεδομένων και παραμετροποίηση αλγορίθμων που προσφέρεται από την εργαλειοθήκη.el
Type of ItemΔιπλωματική Εργασίαel
Type of ItemDiploma Worken
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2022-04-19-
Date of Publication2022-
SubjectPairwise preferencesen
SubjectOrdinal data en
SubjectPreference learningen
Bibliographic CitationAntonia-Chrysovalanto Chaviara, "Improving the efficiency and enhancing the capacity of the PyPLT (Python Preference Learning Toolbox) software tool", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2022en
Bibliographic CitationΑντωνία-Χρυσοβαλάντο Χαβιάρα, "Βελτίωση της αποδοτικότητας και εμπλουτισμός του εργαλείου λογισμικού PyPLT (Python Preference Learning Toolbox)", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2022el

Available Files

Services

Statistics