URI | http://purl.tuc.gr/dl/dias/BCFE8E93-D525-4818-A57A-CFF6735323B7 | - |
Αναγνωριστικό | https://doi.org/10.1109/CSNDSP49049.2020.9249628 | - |
Αναγνωριστικό | https://ieeexplore.ieee.org/document/9249628 | - |
Γλώσσα | en | - |
Μέγεθος | 6 pages | en |
Τίτλος | Extraction of reflectance maps for smart farming applications using Unmanned Aerial Vehicles | en |
Δημιουργός | Livanos Georgios | en |
Δημιουργός | Λιβανος Γεωργιος | el |
Δημιουργός | Ramnalis Dimitris | en |
Δημιουργός | Polychronos Vasilis | en |
Δημιουργός | Balomenou Panagiota | en |
Δημιουργός | Sarigiannidis, Panagiotis, 1979- | en |
Δημιουργός | Kakamoukas Giorgos | en |
Δημιουργός | Karamitsou Thomi | en |
Δημιουργός | Angelidis, Pantelis | en |
Δημιουργός | Zervakis Michail | en |
Δημιουργός | Ζερβακης Μιχαηλ | el |
Εκδότης | Institute of Electrical and Electronics Engineers | en |
Περίληψη | In this application paper, a robust framework for smart remote sensing of cultivations using Unmanned Aerial Vehicles is presented, yielding to a useful tool with advanced capabilities in terms of time-efficiency, accuracy, user-friendly operability, adjustability and expandability. The proposed system incorporates multispectral imaging, automated navigation and real-time monitoring functionalities into a fixed-wing Unmanned Aerial Vehicle platform. Offline analysis of captured data is performed, at this stage of system development, via powerful commercial software so as to extract the reflection map of the crop area under study based on the Normalized Difference Vegetation Index. The proposed approach has been tested on selected cultivations in two regions (Greece), aiming at recording field variability and early detecting factors related to crop stress. Preliminary results indicate that the proposed framework can prove a cost-effective, precise, flexible and operative solution for agriculture industry, enabling the application of smart farming procedures for productive farm management. Adopting a collaborative group of aerial vehicles via Flying Ad hoc Networks, the proposed sensing approach could be further enhanced for large-scale applications, fusing data from multiple nodes into an advanced Decision Support System and providing information on bigger areas at the same time with respect to a single sensing source. | en |
Τύπος | Δημοσίευση σε Συνέδριο | el |
Τύπος | Conference Publication | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2022-05-04 | - |
Ημερομηνία Δημοσίευσης | 2020 | - |
Θεματική Κατηγορία | Smart farming | en |
Θεματική Κατηγορία | Unmanned Aerial Vehicles | en |
Θεματική Κατηγορία | Vegetation index | en |
Θεματική Κατηγορία | Reflectance map | en |
Θεματική Κατηγορία | Multispectral imaging | en |
Θεματική Κατηγορία | Remote sensing | en |
Θεματική Κατηγορία | Spectral signature | en |
Θεματική Κατηγορία | Flying ad-hoc networks | en |
Βιβλιογραφική Αναφορά | G. Livanos, D. Ramnalis, V. Polychronos, P. Balomenou, P. Sarigiannidis, G. Kakamoukas, T. Karamitsou, P. Angelidis, and M. Zervakis, "Extraction of reflectance maps for smart farming applications using Unmanned Aerial Vehicles," in 2020 12th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Porto, Portugal, 2020, pp. 1-6, doi: 10.1109/CSNDSP49049.2020.9249628. | en |