URI | http://purl.tuc.gr/dl/dias/890CB566-17CA-4FB7-A8DE-4B953E1B3DBF | - |
Αναγνωριστικό | https://doi.org/10.26233/heallink.tuc.92115 | - |
Γλώσσα | el | - |
Μέγεθος | 1.3 megabytes | en |
Μέγεθος | 68 σελίδες | el |
Τίτλος | Πρόβλεψη αποχώρησης πελατών με χρήση αλγορίθμων Μηχανικής Μάθησης | el |
Τίτλος | Customer churn prediction using Machine Learning algorithms | en |
Δημιουργός | Chaintoutis Vaios | en |
Δημιουργός | Χαιντουτης Βαιος | el |
Συντελεστής [Επιβλέπων Καθηγητής] | Tsafarakis Stelios | en |
Συντελεστής [Επιβλέπων Καθηγητής] | Τσαφαρακης Στελιος | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Doumpos Michail | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Δουμπος Μιχαηλ | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Krasadaki-Mitsotaki Evangelia | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Κρασαδακη-Μητσοτακη Ευαγγελια | el |
Εκδότης | Πολυτεχνείο Κρήτης | el |
Εκδότης | Technical University of Crete | en |
Ακαδημαϊκή Μονάδα | Technical University of Crete::School of Production Engineering and Management | en |
Ακαδημαϊκή Μονάδα | Πολυτεχνείο Κρήτης::Σχολή Μηχανικών Παραγωγής και Διοίκησης | el |
Περίληψη | Οι αλγόριθμοι Μηχανικής Μάθησης (Machine Learning) εφαρμόζονται όλο και περισσότερο σε διάφορους τομείς, όπως σε αυτούς της βιομηχανίας, της ιατρικής και της αστρονομίας για την εξόρυξη δεδομένων (data mining) από σύνθετες βάσεις (datasets). Στην παρούσα εργασία θα εφαρμοστούν μερικοί από αυτούς τους αλγορίθμους σε μία βάση δεδομένων των πελατών μιας επιχείρησης.
Το dataset που θα χρησιμοποιηθεί, προέρχεται από τη βιβλιοθήκη Kaggle και περιλαμβάνει 64.000 καταχωρήσεις πελατών. Οι μεταβλητές του dataset αφορούν τις αγοραστικές συνήθειες κάθε πελάτη, τις ενδεχόμενες παροχές και προσφορές που έχουν λάβει από την επιχείρηση αλλά και το αν συνεχίζουν να ανήκουν στο πελατολόγιο της ή όχι (conversion rate).
Το πρόγραμμα που θα χρησιμοποιηθεί για τις αναλύσεις είναι το Weka (έκδοση 3.8.5) που αναπτύχθηκε στο πανεπιστήμιο του Waikato της Νέας Ζηλανδίας. Είναι ένα ελεύθερο λογισμικό που περιλαμβάνει διάφορους αλγορίθμους Μηχανικής Μάθησης που εφαρμόζονται για την ανάλυση και εξόρυξη δεδομένων.
Αρχικά, θα εκπαιδευτεί ένας ταξινομητής (classifier) για την πρόβλεψη της συμπεριφοράς πελατών της επιχείρησης ως προς την αφοσίωση και την εμπιστοσύνη που θα δείξουν γιια τις μελλοντικές τους συναλλαγές, ο οποίος θα επιλεχθεί μέσα από μια συγκριτική αξιολόγηση (benchmarking) αλγορίθμων επιτηρούμενης μάθησης ως προς την ακρίβεια και ποιότητα των αποτελεσμάτων, με σκοπό να βρεθεί ο αλγόριθμος με τον καλύτερο συνδυασμό παραμέτρων.
Στη συνέχεια, επιχειρείται ένας διαχωρισμός των πελατών σε δύο κατηγορίες, αυτούς που συνεχίζουν τις συναλλαγές τους με την επιχείρηση και αυτούς που αποχώρησαν (churners). Σε κάθε μία από τις ομάδες θα εφαρμοστούν αλγόριθμοι ομαδοποίησης και εξαγωγής κανόνων συσχέτισης για να εντοπιστούν μοτίβα και κοινά χαρακτηριστικά μεταξύ των πελατών που να εξηγούν και να δικαιολογούν τη φυγή τους ή όχι.
Στην ομαδοποίηση (clustering), θα γίνει ο διαχωρισμός του δείγματος σε ομάδες με χρήση του αλγορίθμου k-means, όπου τα στοιχεία της μιας ομάδας είναι όσο το δυνατόν πιο όμοια μεταξύ τους και όσο το συνατόν πιο διαφορετικά από τις υπόλοιπες ομάδες για να υπάρξει μια ξεκάθαρη κατηγοριοποίηση.
Η εξαγωγή κανόνων συσχέτισης (association rules) είναι μία μέθοδος για την ανακάλυψη ενδιαφέρων σχέσεων μεταξύ μεταβλητών σε μεγάλες βάσεις δεδομένων. Με αυτό τον τρόπο εντοπίζονται κοινές συνήθειες των πελατών που ανάλογα με τη συχνότητα που εμφανίζονται οδηγούν σε χρήσιμα συμπεράσματα.
Τελικός στόχος είναι να βρεθεί το προφίλ των πελατών που είναι πιο πιθανό να αποχωρήσουν από την επιχείρηση, να αναλυθεί, για να εφαρμοστούν μέθοδοι στοχευμένου μάρκετινγκ προκειμένου να καταφέρει η επιχείρηση να κρατήσει τους πελάτες αυτούς κοντά της, αλλά και ενδεχομένως να ανταμείψει το προφίλ πελατών που επιδεικνύουν συνέπεια και αφοσίωση. | el |
Τύπος | Διπλωματική Εργασία | el |
Τύπος | Diploma Work | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2022-05-04 | - |
Ημερομηνία Δημοσίευσης | 2022 | - |
Θεματική Κατηγορία | Machine learning | en |
Θεματική Κατηγορία | Customer churn | en |
Θεματική Κατηγορία | Customer loyalty | en |
Θεματική Κατηγορία | Στοχευμένο μάρκετινγκ | el |
Βιβλιογραφική Αναφορά | Βάιος Χαϊντούτης, "Πρόβλεψη αποχώρησης πελατών με χρήση αλγορίθμων Μηχανικής Μάθησης", Διπλωματική Εργασία, Σχολή Μηχανικών Παραγωγής και Διοίκησης, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2022 | el |
Βιβλιογραφική Αναφορά | Vaios Chaintoutis, "Customer churn prediction using Machine Learning algorithms ", Diploma Work, School of Production Engineering and Management, Technical University of Crete, Chania, Greece, 2022 | en |