Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Semantic artificial neural networks

Batsakis Sotirios, Tachmazidis Ilias, Baryannis George, Antoniou, Grigoris

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/8535DAA2-B92D-434B-AFCF-5DFD48D00DFC-
Αναγνωριστικόhttps://doi.org/10.1007/978-3-030-62327-2_7-
Αναγνωριστικόhttps://link.springer.com/chapter/10.1007/978-3-030-62327-2_7-
Γλώσσαen-
Μέγεθος6 pagesen
ΤίτλοςSemantic artificial neural networksen
ΔημιουργόςBatsakis Sotiriosen
ΔημιουργόςΜπατσακης Σωτηριοςel
ΔημιουργόςTachmazidis Iliasen
ΔημιουργόςBaryannis Georgeen
ΔημιουργόςAntoniou, Grigorisen
ΕκδότηςSpringer Natureen
ΠερίληψηNeural networks have achieved in recent years human level performance in various application domains, including critical applications where accountability is a very important issue, closely related to the interpretability of neural networks and artificial intelligence in general. In this work, an approach for defining the structure of neural networks based on the conceptualisation and semantics of the application domain is proposed. The proposed approach, called Semantic Artificial Neural Networks, allows dealing with the problem of interpretability and also the definition of the structure of neural networks. In addition, the resulting neural networks are sparser and have fewer parameters than typical neural networks, while achieving high performance.en
ΤύποςΣύντομη Δημοσίευση σε Συνέδριοel
ΤύποςConference Short Paperen
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2022-06-03-
Ημερομηνία Δημοσίευσης2020-
Θεματική ΚατηγορίαNeural networksen
Θεματική ΚατηγορίαInterpretabilityen
Θεματική ΚατηγορίαSemantic Weben
Βιβλιογραφική ΑναφοράS. Batsakis, I. Tachmazidis, G. Baryannis, and G. Antoniou, “Semantic artificial neural networks,” in The Semantic Web: ESWC 2020 Satellite Events, vol 12124, Lecture Notes in Computer Science, A. Harth, V. Presutti, R. Troncy, M. Acosta, A. Polleres, J. D. Fernández, J. Xavier Parreira, O. Hartig, K. Hose, M. Cochez, Eds., Cham, Switzerland: Springer Nature, 2020, pp. 39–44, doi: 10.1007/978-3-030-62327-2_7.en

Υπηρεσίες

Στατιστικά