Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Distinguish regional performance with the use of shift-share analysis and MCDA methods: a gross value added perspective

Xanthos Georgios, Zopounidis Konstantinos, Garefalakis Alexandros, Lemonakis Christos, Passas Ioannis

Simple record


URIhttp://purl.tuc.gr/dl/dias/A3881836-0B6B-4A11-8641-22E4B604F97D-
Identifierhttps://doi.org/10.1007/s12351-020-00582-6-
Identifierhttps://link.springer.com/article/10.1007/s12351-020-00582-6-
Languageen-
Extent14 pagesel
TitleDistinguish regional performance with the use of shift-share analysis and MCDA methods: a gross value added perspectiveen
CreatorXanthos Georgiosen
CreatorZopounidis Konstantinosen
CreatorΖοπουνιδης Κωνσταντινοςel
CreatorGarefalakis Alexandrosen
CreatorLemonakis Christosen
CreatorΛεμονακης Χρηστοςel
CreatorPassas Ioannisen
PublisherSpringeren
Content SummaryThis study aims to take into account regional gross value added, to assess the performance of this macroeconomic component for all thirteen Regions of Greece. We apply two different methods for the period between 2010 and 2016, (1) the PROMETHEE II Multi-criteria method and (2) Shift and Share Analysis (SHA). In a nutshell, in nine out of thirteen Regions of Greece, the Promethee II method ranks the regions of Greece in a wholly identical or relatively similar manner to the SHA method, indicating that there is a robust framework considering the joint review for both proposed methods regarding regional performance.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2022-06-08-
Date of Publication2022-
SubjectShift and share analysisen
SubjectPROMETHEE IIen
SubjectRegional developmenten
SubjectRegional efficiencyen
SubjectGross value addeden
Bibliographic CitationG. Xanthos, C. Zopounidis, A. Garefalakis, C. Lemonakis, and I. Passas, “Distinguish regional performance with the use of shift-share analysis and MCDA methods: a gross value added perspective,” Oper. Res. Int. J., vol. 22, no. 2, pp. 1363–1376, Apr. 2022, doi: 10.1007/s12351-020-00582-6.en

Services

Statistics