URI | http://purl.tuc.gr/dl/dias/0166077B-94B2-467A-9543-62A0430A7B4A | - |
Αναγνωριστικό | https://doi.org/10.3390/app112411790 | - |
Αναγνωριστικό | https://www.mdpi.com/2076-3417/11/24/11790/htm | - |
Γλώσσα | en | - |
Μέγεθος | 26 pages | en |
Τίτλος | Cyber-physical LPG debutanizer distillation columns: machine-learning-based soft sensors for product quality monitoring | en |
Δημιουργός | Rožanec Jože Martin | en |
Δημιουργός | Trajkova Elena | en |
Δημιουργός | Lu Jinzhi | en |
Δημιουργός | Sarantinoudis Nikolaos | en |
Δημιουργός | Σαραντινουδης Νικολαος | el |
Δημιουργός | Arampatzis Georgios | en |
Δημιουργός | Αραμπατζης Γεωργιος | el |
Δημιουργός | Eirinakis Pavlos | en |
Δημιουργός | Mourtos Ioannis | en |
Δημιουργός | Onat Melike K. | en |
Δημιουργός | Yilmaz Deren A. | en |
Δημιουργός | Košmerlj Aljaž | en |
Δημιουργός | Kenda Klemen | en |
Δημιουργός | Fortuna Blaz | en |
Δημιουργός | Mladenic Dunja | en |
Εκδότης | MDPI | en |
Περίληψη | Refineries execute a series of interlinked processes, where the product of one unit serves as the input to another process. Potential failures within these processes affect the quality of the end products, operational efficiency, and revenue of the entire refinery. In this context, implementation of a real-time cognitive module, referring to predictive machine learning models, enables the provision of equipment state monitoring services and the generation of decision-making for equipment operations. In this paper, we propose two machine learning models: (1) to forecast the amount of pentane (C5) content in the final product mixture; (2) to identify if C5 content exceeds the specification thresholds for the final product quality. We validate our approach using a use case from a real-world refinery. In addition, we develop a visualization to assess which features are considered most important during feature selection, and later by the machine learning models. Finally, we provide insights on the sensor values in the dataset, which help to identify the operational conditions for using such machine learning models. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2022-09-20 | - |
Ημερομηνία Δημοσίευσης | 2021 | - |
Θεματική Κατηγορία | Artificial intelligence | en |
Θεματική Κατηγορία | Explainable artificial intelligence | en |
Θεματική Κατηγορία | Industry 4.0 | en |
Θεματική Κατηγορία | Smart manufacturing | en |
Θεματική Κατηγορία | Crude oil distillation | en |
Θεματική Κατηγορία | Debutanization | en |
Θεματική Κατηγορία | LPG purification | en |
Βιβλιογραφική Αναφορά | J. M. Rožanec, E. Trajkova, J. Lu, N. Sarantinoudis, G. Arampatzis, P. Eirinakis, I. Mourtos, M. K. Onat, D. A. Yilmaz, A. Košmerlj, K. Kenda, B. Fortuna, and D. Mladenić, “Cyber-physical LPG debutanizer distillation columns: machine-learning-based soft sensors for product quality monitoring,” Appl. Sci., vol. 11, no. 24, Dec. 2021, doi: 10.3390/app112411790. | en |