Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Photonic band structure design using persistent homology

Leykam Daniel, Angelakis Dimitrios

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/0547D601-E1A5-4369-A28B-2D28903C19CD-
Αναγνωριστικόhttps://doi.org/10.1063/5.0041084-
Αναγνωριστικόhttps://aip.scitation.org/doi/10.1063/5.0041084-
Γλώσσαen-
Μέγεθος9 pagesen
ΤίτλοςPhotonic band structure design using persistent homologyen
ΔημιουργόςLeykam Danielen
ΔημιουργόςAngelakis Dimitriosen
ΔημιουργόςΑγγελακης Δημητριοςel
ΕκδότηςAmerican Institute of Physicsen
ΠερίληψηThe machine learning technique of persistent homology classifies complex systems or datasets by computing their topological features over a range of characteristic scales. There is growing interest in applying persistent homology to characterize physical systems such as spin models and multiqubit entangled states. Here, we propose persistent homology as a tool for characterizing and optimizing band structures of periodic photonic media. Using the honeycomb photonic lattice Haldane model as an example, we show how persistent homology is able to reliably classify a variety of band structures falling outside the usual paradigms of topological band theory, including “moat band” and multi-valley dispersion relations, and thereby control the properties of quantum emitters embedded in the lattice. The method is promising for the automated design of more complex systems such as photonic crystals and Moiré superlattices.en
ΤύποςPeer-Reviewed Journal Publicationen
ΤύποςΔημοσίευση σε Περιοδικό με Κριτέςel
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2023-01-13-
Ημερομηνία Δημοσίευσης2021-
Θεματική ΚατηγορίαPersistent homologyen
Θεματική ΚατηγορίαHoneycomb photonic lattice Haldane modelen
Βιβλιογραφική ΑναφοράD. Leykam and D. G. Angelakis, “Photonic band structure design using persistent homology,” APL Photon., vol. 6, no. 3, Mar. 2021, doi: 10.1063/5.0041084.en

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά