Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Methodologies for the prediction of network usage within the context of cellular hotspots

Koutroumpas Georgios

Simple record


URIhttp://purl.tuc.gr/dl/dias/DA195DBC-1FFE-47AC-A174-6940063035C7-
Identifierhttps://doi.org/10.26233/heallink.tuc.94673-
Languageen-
Extent2.3 megabytesen
Extent63 pagesen
TitleMethodologies for the prediction of network usage within the context of cellular hotspots en
TitleΜεθοδολογίες πρόβλεψης χρήσης δικτύων στο πλαίσιο ''hotspot'' κεραιών κινητής τηλεφωνίας el
CreatorKoutroumpas Georgiosen
CreatorΚουτρουμπας Γεωργιοςel
Contributor [Thesis Supervisor]Ioannidis Sotiriosen
Contributor [Thesis Supervisor]Ιωαννιδης Σωτηριοςel
Contributor [Committee Member]Dollas Apostolosen
Contributor [Committee Member]Δολλας Αποστολοςel
Contributor [Committee Member]Zervakis Michailen
Contributor [Committee Member]Ζερβακης Μιχαηλel
PublisherΠολυτεχνείο Κρήτηςel
PublisherTechnical University of Creteen
Academic UnitTechnical University of Crete::School of Electrical and Computer Engineeringen
Academic UnitΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστώνel
DescriptionΔιπλωματική εργασίαel
Content SummaryToday we live in a society that relies upon technology. Everything we see around us has become more and more advanced with the addition of smart phones, smart cars and maybe even smart clothes. Many of those devices require the remote use of the world wide web to function properly. This fact,in conjunction with the ever increasing population in central living areas, creates severe issues to mobile service providers. Sudden demand bursts of their service can cause bottlenecks to the network infrastructure, resulting in performance issues to the cellular antennas. An interesting solution for this problem is forecasting when and where those performance drops will happen and re-calibrating the network parameters, effectively avoiding disaster. In this work I propose a neural network algorithm that will handle the forecasting task of those performance drops, referring to them as hotspots. To achieve this goal I am going to cooperate with the company Telefonica, which will provide essential information gathered from its networks antennas, as well as important feedback towards the final product. Using a combination of Gated Recurrent Units and Graph Convolution Networks the plan is to capture spatial and temporal dependencies that exist in the networks behaviour, effectively predicting most of the real performance drops in long prediction horizons. The focus of this work is to have accurate predictions of as many hotspots as possible and on the same time support a vast amount of antennas in the calculation.en
Content SummaryΣήμερα ζούμε σε μια κοινωνία που βασίζεται στην τεχνολογία. Όλα όσα βλέπουμε γύρω μας έχουν γίνει ολοένα και πιο εξελιγμένα με την προσθήκη έξυπνων τηλεφώνων, έξυπνων αυτοκινήτων και ίσως ακόμη και έξυπνων ρούχων. Πολλές από αυτές τις συσκευές απαιτούν την απομακρυσμένη χρήση του παγκόσμιου ιστού για να λειτουργήσουν σωστά. Το γεγονός αυτό, σε συνδυασμό με τον συνεχώς αυξανόμενο πληθυσμό στις κεντρικές περιοχές διαβίωσης, δημιουργεί σοβαρά προβλήματα στους παρόχους υπηρεσιών κινητής τηλεφωνίας. Οι ξαφνικές εκρήξεις ζήτησης της υπηρεσίας τους μπορεί να προκαλέσουν συμφόρηση στην υποδομή δικτύου, με αποτέλεσμα προβλήματα απόδοσης στις κεραίες κινητής τηλεφωνίας. Μια ενδιαφέρουσα λύση για αυτό το πρόβλημα είναι η πρόβλεψη πότε και πού θα συμβούν αυτές οι πτώσεις απόδοσης και η εκ νέου βαθμονόμηση των παραμέτρων του δικτύου, αποφεύγοντας αποτελεσματικά την καταστροφή. Σε αυτή την εργασία προτείνω έναν αλγόριθμο νευρωνικού δικτύου που θα χειριστεί την πρόβλεψη αυτών των πτώσεων απόδοσης, αναφερόμενος σε αυτά ως hotspot. Για την επίτευξη αυτού του στόχου πρόκειται να συνεργαστώ με την εταιρεία Telefonica, η οποία θα παρέχει βασικές πληροφορίες που συλλέγονται από τις κεραίες των δικτύων της, δίνοντας επίσης και σημαντικές πληροφορίες για το τελικό προϊόν. Χρησιμοποιώντας έναν συνδυασμό Gated Recurrent Units και Graph Convolution Networks, το σχέδιο είναι να αποτυπωθούν οι χωρικές και χρονικές εξαρτήσεις που υπάρχουν στη συμπεριφορά των δικτύων, προβλέποντας αποτελεσματικά τις περισσότερες από τις πραγματικές πτώσεις απόδοσης σε μεγάλους ορίζοντες πρόβλεψης. Το επίκεντρο αυτής της εργασίας είναι να έχουμε ακριβείς προβλέψεις για όσο το δυνατόν περισσότερα hotspot και ταυτόχρονα να υποστηρίζουμε έναν τεράστιο αριθμό κεραιών στον υπολογισμό.el
Type of ItemΔιπλωματική Εργασίαel
Type of ItemDiploma Worken
Licensehttp://creativecommons.org/licenses/by-nc-nd/4.0/en
Date of Item2023-01-30-
Date of Publication2022-
SubjectCellular Hotspot Forecastingen
SubjectNeural networksen
SubjectMachine learningen
Bibliographic CitationGeorgios Koutroumpas, "Methodologies for the prediction of network usage within the context of cellular hotspots", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2022en
Bibliographic CitationΓεώργιος Κουτρουμπάς, "Μεθοδολογίες πρόβλεψης χρήσης δικτύων στο πλαίσιο ''hotspot'' κεραιών κινητής τηλεφωνίας", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2022el

Available Files

Services

Statistics