Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Hydrothermal extraction of silver from polycrystalline photovoltaic panels waste

Lagoudakis Emmanouil

Full record


URI: http://purl.tuc.gr/dl/dias/15E91AF9-106F-4710-8AB0-06AAB2B5FAE3
Year 2022
Type of Item Diploma Work
License
Details
Bibliographic Citation Emmanouil Lagoudakis, "Hydrothermal extraction of silver from polycrystalline photovoltaic panels waste", Diploma Work, School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece, 2022 https://doi.org/10.26233/heallink.tuc.94937
Appears in Collections

Summary

The first large-scale installation of first-generation photovoltaic panels took place around 2000, and since the typical lifetime of a photovoltaic panel is predicted to be around 20 to 25 years, the issue of managing the large scale quantities of polycrystalline photovoltaic panels waste will soon arise. Thus, the recycling of individual PV panel materials should be considered extremely important. The quantity and quality of materials that can be recovered by the proposed recycling techniques are key factors for economic viability. Due to the wide range of components found in a panel, the recycling of polycrystalline silicon solar panels is a multi- stage process. Pure silicon, which can be recovered from the spent components, is the most important material from an economic point of view, mainly due to the large amount within the panel. Due to the great difficulty of recycling c-Si cells, elements such as aluminum and silver are becoming increasingly beneficial to improve the economic feasibility of recycling. Photovoltaic panels use also silver, which is mainly found in the semiconductor layer of first- generation photovoltaic modules.In this work, experimental conditions were investigated regarding the optimal recovery of silver from polycrystalline photovoltaic waste of the 1st generation. The aim was to find the optimal conditions for the hydrothermal and thermal methods to extract silver from the panel. In particular, manual and thermal pretreatment were applied as reported in previous studies with slight variations. Then, hydrothermal treatment using HNO3 as extraction agent for silver recovery from photovoltaic waste was implemented, and then, thermal treatment stirring were carried out.The primary finding of the current study is the validation of the results for the pre-treatment phase, however hydrothermal extraction of silver was not very efficient, marking 88,45%. The thermal treatment was effective since silver was completely extracted in three cases.

Available Files

Services

Statistics