URI | http://purl.tuc.gr/dl/dias/DE097300-EE7A-4B42-9469-3DD686BF82C3 | - |
Αναγνωριστικό | https://doi.org/10.1109/IST50367.2021.9651468 | - |
Αναγνωριστικό | https://ieeexplore.ieee.org/document/9651468 | - |
Γλώσσα | en | - |
Μέγεθος | 6 pages | en |
Τίτλος | A novel one-vs-rest classification framework for mutually supported decisions by independent parallel classifiers | en |
Δημιουργός | Vogiatzis Antonios | en |
Δημιουργός | Βογιατζης Αντωνιος | el |
Δημιουργός | Chalkiadakis Georgios | en |
Δημιουργός | Χαλκιαδακης Γεωργιος | el |
Δημιουργός | Moirogiorgou Konstantia | en |
Δημιουργός | Μοιρογιωργου Κωνσταντια | el |
Δημιουργός | Zervakis Michail | en |
Δημιουργός | Ζερβακης Μιχαηλ | el |
Εκδότης | Institute of Electrical and Electronics Engineers | en |
Περίληψη | We put forward a generic classification architecture of independent parallel CNNs that explicitly exploits a “mutual exclusivity” or “classifiers’ mutually supported decisions” property underlying many dataset domains of interest, namely that in many cases an image in a given dataset might almost unquestionably belong to one class only. Our framework incorporates several designed-to-purpose opinion aggregation decision rules that are triggered when the mutual exclusivity property is or is not satisfied; and makes use of “weights” which intuitively mirror the confidence each CNN has in identifying its corresponding class. Our framework can thus (a) take advantage of clear class boundaries when these exist, and (b) effectively assign items to classes with increased confidence, even when clear class boundaries do not exist. We confirm the effectiveness of our approach via experiments conducted on a well-known dataset from the waste classification domain. | en |
Τύπος | Πλήρης Δημοσίευση σε Συνέδριο | el |
Τύπος | Conference Full Paper | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2023-05-11 | - |
Ημερομηνία Δημοσίευσης | 2021 | - |
Θεματική Κατηγορία | Image classification | en |
Θεματική Κατηγορία | Supervised learning | en |
Θεματική Κατηγορία | Mutual exclusivity | en |
Θεματική Κατηγορία | Decision rules | en |
Θεματική Κατηγορία | Opinion aggregation | en |
Βιβλιογραφική Αναφορά | A. Vogiatzis, G. Chalkiadakis, K. Moirogiorgou and M. Zervakis, "A novel one-vs-rest classification framework for mutually supported decisions by independent parallel classifiers," presented at the 2021 IEEE International Conference on Imaging Systems and Techniques (IST), Kaohsiung, Taiwan, 2021, doi: 10.1109/IST50367.2021.9651468. | en |