Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

A novel one-vs-rest classification framework for mutually supported decisions by independent parallel classifiers

Vogiatzis Antonios, Chalkiadakis Georgios, Moirogiorgou Konstantia, Zervakis Michail

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/DE097300-EE7A-4B42-9469-3DD686BF82C3-
Αναγνωριστικόhttps://doi.org/10.1109/IST50367.2021.9651468-
Αναγνωριστικόhttps://ieeexplore.ieee.org/document/9651468-
Γλώσσαen-
Μέγεθος6 pagesen
ΤίτλοςA novel one-vs-rest classification framework for mutually supported decisions by independent parallel classifiersen
ΔημιουργόςVogiatzis Antoniosen
ΔημιουργόςΒογιατζης Αντωνιοςel
ΔημιουργόςChalkiadakis Georgiosen
ΔημιουργόςΧαλκιαδακης Γεωργιοςel
ΔημιουργόςMoirogiorgou Konstantiaen
ΔημιουργόςΜοιρογιωργου Κωνσταντιαel
ΔημιουργόςZervakis Michailen
ΔημιουργόςΖερβακης Μιχαηλel
ΕκδότηςInstitute of Electrical and Electronics Engineersen
ΠερίληψηWe put forward a generic classification architecture of independent parallel CNNs that explicitly exploits a “mutual exclusivity” or “classifiers’ mutually supported decisions” property underlying many dataset domains of interest, namely that in many cases an image in a given dataset might almost unquestionably belong to one class only. Our framework incorporates several designed-to-purpose opinion aggregation decision rules that are triggered when the mutual exclusivity property is or is not satisfied; and makes use of “weights” which intuitively mirror the confidence each CNN has in identifying its corresponding class. Our framework can thus (a) take advantage of clear class boundaries when these exist, and (b) effectively assign items to classes with increased confidence, even when clear class boundaries do not exist. We confirm the effectiveness of our approach via experiments conducted on a well-known dataset from the waste classification domain.en
ΤύποςΠλήρης Δημοσίευση σε Συνέδριοel
ΤύποςConference Full Paperen
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2023-05-11-
Ημερομηνία Δημοσίευσης2021-
Θεματική ΚατηγορίαImage classificationen
Θεματική ΚατηγορίαSupervised learningen
Θεματική ΚατηγορίαMutual exclusivityen
Θεματική ΚατηγορίαDecision rulesen
Θεματική ΚατηγορίαOpinion aggregationen
Βιβλιογραφική ΑναφοράA. Vogiatzis, G. Chalkiadakis, K. Moirogiorgou and M. Zervakis, "A novel one-vs-rest classification framework for mutually supported decisions by independent parallel classifiers," presented at the 2021 IEEE International Conference on Imaging Systems and Techniques (IST), Kaohsiung, Taiwan, 2021, doi: 10.1109/IST50367.2021.9651468.en

Υπηρεσίες

Στατιστικά