Το έργο με τίτλο Characterizing photonic band structures using topological data analysis από τον/τους δημιουργό/ούς Leykam Daniel, Angelakis Dimitrios διατίθεται με την άδεια Creative Commons Αναφορά Δημιουργού 4.0 Διεθνές
Βιβλιογραφική Αναφορά
D. Leykam and D. G. Angelakis, "Characterizing photonic band structures using topological data analysis," presented at the 2021 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), Munich, Germany, 2021, doi: 10.1109/CLEO/Europe-EQEC52157.2021.9541650.
https://doi.org/10.1109/CLEO/Europe-EQEC52157.2021.9541650
Topological data analysis forms a suite of techniques for characterizing the abstract "shapes" of complex high-dimensional data. Being sensitive to global features, topological data analysis shows promise for the unsupervised machine learning of order parameters and topological phases. Here we show how the topological data analysis technique of persistent homology may be applied to characterize photonic band structures and learn their topological features.