URI | http://purl.tuc.gr/dl/dias/4163C723-F3A5-4838-BEAF-2A8104F02EB3 | - |
Identifier | https://doi.org/10.23919/EUSIPCO54536.2021.9616029 | - |
Identifier | https://ieeexplore.ieee.org/document/9616029 | - |
Language | en | - |
Extent | 5 pages | en |
Title | An accelerated stochastic gradient for canonical polyadic decomposition | en |
Creator | Siaminou Ioanna | en |
Creator | Σιαμινου Ιωαννα | el |
Creator | Liavas Athanasios | en |
Creator | Λιαβας Αθανασιος | el |
Publisher | Institute of Electrical and Electronics Engineers | en |
Content Summary | We consider the problem of structured canonical polyadic decomposition. If the size of the problem is very big, then stochastic gradient approaches are viable alternatives to classical methods, such as Alternating Optimization and All-At-Once optimization. We extend a recent stochastic gradient approach by employing an acceleration step (Nesterov momentum) in each iteration. We compare our approach with state-of-the-art alternatives, using both synthetic and real-world data, and find it to be very competitive. | en |
Type of Item | Δημοσίευση σε Συνέδριο | el |
Type of Item | Conference Publication | en |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2023-05-26 | - |
Date of Publication | 2021 | - |
Subject | Tensor factorization | en |
Subject | Stochastic optimization | en |
Subject | CPD/PARAFAC | en |
Subject | Nesterov acceleration | en |
Bibliographic Citation | I. Siaminou and A. P. Liavas, "An accelerated stochastic gradient for canonical polyadic decomposition," in 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 2021, pp. 1785-1789, doi: 10.23919/EUSIPCO54536.2021.9616029. | en |