Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Accelerated stochastic gradient for nonnegative tensor completion and parallel implementation

Siaminou Ioanna, Papagiannakos Ioannis-Marios, Kolomvakis Christos, Liavas Athanasios

Simple record


URIhttp://purl.tuc.gr/dl/dias/8BB84BD1-7ED4-4E9E-9398-CB066FEEA045-
Identifierhttps://doi.org/10.23919/EUSIPCO54536.2021.9616067-
Identifierhttps://ieeexplore.ieee.org/document/9616067-
Languageen-
Extent5 pagesen
TitleAccelerated stochastic gradient for nonnegative tensor completion and parallel implementationen
CreatorSiaminou Ioannaen
CreatorΣιαμινου Ιωανναel
CreatorPapagiannakos Ioannis-Mariosen
CreatorΠαπαγιαννακος Ιωαννης-Μαριοςel
CreatorKolomvakis Christosen
CreatorΚολομβακης Χρηστοςel
CreatorLiavas Athanasiosen
CreatorΛιαβας Αθανασιοςel
PublisherInstitute of Electrical and Electronics Engineersen
Content SummaryWe consider the problem of nonnegative tensor completion. We adopt the alternating optimization framework and solve each nonnegative matrix completion problem via a stochastic variation of the accelerated gradient algorithm. We experimentally test the effectiveness and the efficiency of our algorithm using both real-world and synthetic data. We develop a shared-memory implementation of our algorithm using the multithreaded API OpenMP, which attains significant speedup. We believe that our approach is a very competitive candidate for the solution of very large nonnegative tensor completion problems.en
Type of ItemΔημοσίευση σε Συνέδριοel
Type of ItemConference Publicationen
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2023-05-26-
Date of Publication2021-
SubjectTensorsen
SubjectStochastic gradienten
SubjectNonnegative tensor completionen
SubjectOptimal first-order optimization algorithmsen
SubjectParallel algorithmsen
SubjectOpenMPen
Bibliographic CitationI. Siaminou, I. M. Papagiannakos, C. Kolomvakis and A. P. Liavas, "Accelerated stochastic gradient for nonnegative tensor completion and parallel implementation," in 2021 29th European Signal Processing Conference (EUSIPCO), Dublin, Ireland, 2021, pp. 1790-1794, doi: 10.23919/EUSIPCO54536.2021.9616067.en

Available Files

Services

Statistics