URI | http://purl.tuc.gr/dl/dias/0495D0F8-4203-4677-B50C-F68EE65AC971 | - |
Αναγνωριστικό | https://doi.org/10.26233/heallink.tuc.96133 | - |
Γλώσσα | en | - |
Μέγεθος | A4 (210x297mm) | en |
Μέγεθος | 6.2 megabytes | en |
Μέγεθος | 155 pages | en |
Τίτλος | Reconfigurable logic (FPGA)-based system architecture for the acceleration of federated learning in neural networks
| en |
Τίτλος | Αρχιτεκτονική συστημάτων βασισμένων σε αναδιατασσόμενη λογική (FPGA) για επιτάχυνση συνεργατικής μάθησης | el |
Δημιουργός | Petrakos Emmanouil | en |
Δημιουργός | Πετρακος Εμμανουηλ | el |
Συντελεστής [Επιβλέπων Καθηγητής] | Dollas Apostolos | en |
Συντελεστής [Επιβλέπων Καθηγητής] | Δολλας Αποστολος | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Lagoudakis Michail | en |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Λαγουδακης Μιχαηλ | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Γρηγόριος Τσαγκατάκης | el |
Συντελεστής [Μέλος Εξεταστικής Επιτροπής] | Grigorios Tsagkatakis | en |
Εκδότης | Πολυτεχνείο Κρήτης | el |
Εκδότης | Technical University of Crete | en |
Ακαδημαϊκή Μονάδα | Technical University of Crete::School of Electrical and Computer Engineering | en |
Ακαδημαϊκή Μονάδα | Πολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών | el |
Περίληψη | Federated Learning (FL) is a decentralized training method for Machine Learning applications which can exploit data that are inaccessible to conventional centralized approaches, due to privacy and security concerns. FL literature has refined and evaluated most of its aspects, but generally few works have taken into consideration the underlying hardware, where the training actually takes place.
This thesis demonstrates that, in the on-edge FL setting, the clients can effectively utilize FPGAs to accelerate their local training and the overall FL process. First, an FL system, agnostic of the underlying training method and its implementation, is developed. With that, an in-depth analysis of the effects of each FL parameter is conducted. According to its findings, an FPGA-based implementation of a Convolutional Neural Network (CNN), optimized for the parameter space where the FL is most efficient, is developed and incorporated into the FL system.
Through actual runs on real hardware, the FPGA-based solution presents a modest speedup of the local training (1.27$\times$-1.44$\times$) and the overall FL process (1.08$\times$-1.20$\times$) in comparison to a GPU-based one, depending on data distribution. More impressively, it consumes (16.35$\times$-18.18$\times$) less energy. Thus, this thesis provides more than a feasibility study of combining FL and FPGAs, and it can be used as a starting point for future works or as a benchmarking reference. | en |
Περίληψη | Το Federated Learning (FL) είναι μια αποκεντρωμένη μέθοδος εκπαίδευσης για εφαρμογές Μηχανικής Μάθησης, που μπορεί να εκμεταλλευτεί δεδομένα τα οποία
είναι μη προσβάσιμα από συμβατικές κεντρικοποιημένες μεθόδους, λόγω ανησυχιών περί προσωπικού απορρήτου και κυβερνοασφάλειας. Σχετικές έρευνες έχουν
βελτιώσει και αξιολογήσει τις περισσότερες πτυχές του, αλλά γενικά λίγες από αυτές λαμβάνουν υπόψη το υποκείμενο υλικό, όπου λαμβάνει χώρα η εκπαίδευση.
Αυτή η εργασία αποδεικνύει ότι, στο on-edge FL, οι πελάτες μπορούν να χρησιμοποιήσουν αποτελεσματικά FPGAs για να επιταχύνουν την τοπική εκπαίδευση και τη συνολική FL διαδικασία. Καταρχάς, υλοποιήθηκε ένα FL σύστημα, ανεξάρτητο της υποκείμενης μεθόδου εκπαίδευσης και της υλοποίησής της. Μέσω αυτού,
έγινε εις βάθος ανάλυση των επιδράσεων κάθε παραμέτρου του FL. Σύμφωνα με τα ευρήματα της, υλοποιήθηκε ένα Συνελυκτικό Νευρωνικό Δίκτυο σε FPGA,
βελτιστοποιημένο για τον χώρο παραμέτρων όπου το FL είναι πιο αποτελεσματικό, και συνδέθηκε στο FL σύστημα.
Μέσω μετρήσεων σε πραγματικό υλικό, η υλοποίηση βασισμένη σε FPGA εμφανίζει μια μέτρια επιτάχυνση στην τοπική εκπαίδευση (1,27×-1,44×) και στην συνολική FL διαδικασία (1,08×-1,20×), σε σύγκριση με αντίστοιχη υλοποίηση βασισμένη σε GPU, συναρτήσει της διασποράς των δεδομένων. Πιο εντυπωσιακά, καταναλώνει (16,35×-18,18×) λιγότερη ενέργεια. Τοιουτοτρόπως, η παρούσα εργασία παρέχει παραπάνω από μια μελέτη σκοπιμότητας συνδυασμού FL & PGAs, και μπορεί να χρησιμοποιηθεί ως αφετηρία για μελλοντικές εργασίες ή ως μέτρο σύγκρισης.
| el |
Τύπος | Διπλωματική Εργασία | el |
Τύπος | Diploma Work | en |
Άδεια Χρήσης | http://creativecommons.org/licenses/by-sa/4.0/ | en |
Ημερομηνία | 2023-06-16 | - |
Ημερομηνία Δημοσίευσης | 2023 | - |
Θεματική Κατηγορία | Federated learning | en |
Θεματική Κατηγορία | Reconfigurable logic | en |
Θεματική Κατηγορία | Artificial intelligence | en |
Βιβλιογραφική Αναφορά | Emmanouil Petrakos, "Reconfigurable logic (FPGA)-based system architecture for the acceleration of federated learning in neural networks", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2023 | en |
Βιβλιογραφική Αναφορά | Εμμανουήλ Πετράκος, "Αρχιτεκτονική συστημάτων βασισμένων σε αναδιατασσόμενη λογική (FPGA) για επιτάχυνση συνεργατικής μάθησης", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2023 | el |