Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Real-time processing of geo-distributed financial data

Kontaxakis Antonios, Deligiannakis Antonios, Arndt Holger, Burkard Stefan, Kettner Claus-Peter, Pelikan Elke, Noack Kathleen

Simple record


URIhttp://purl.tuc.gr/dl/dias/C645792E-66E5-4E59-BB7F-4457C13496AB-
Identifierhttps://doi.org/10.1145/3465480.3467842-
Identifierhttps://dl.acm.org/doi/10.1145/3465480.3467842-
Languageen-
Extent2 pagesen
TitleReal-time processing of geo-distributed financial dataen
CreatorKontaxakis Antoniosen
CreatorΚονταξακης Αντωνιοςel
CreatorDeligiannakis Antoniosen
CreatorΔεληγιαννακης Αντωνιοςel
CreatorArndt Holgeren
CreatorBurkard Stefanen
CreatorKettner Claus-Peteren
CreatorPelikan Elkeen
CreatorNoack Kathleenen
PublisherAssociation for Computing Machinery (ACM)en
Content SummaryEnabling real-time processing of financial data streams is extremely challenging, especially considering that typical operations that interest investors often require combining data across (a potentially quadratic number of) different pairs of stocks. In this paper we present the architecture and the components of our system for the real-time processing of geo-distributed financial data at scale. Our system can scale to larger resources and utilizes a Synopses Data Engine in order to efficiently handle complex cross-stock queries, such as the ones required to detect systemic risk or to help forecast the value of some stock. The rich set of supported operations is depicted at the Visual Analytics component of our system.en
Type of ItemΑφίσα σε Συνέδριοel
Type of ItemConference Posteren
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2023-06-23-
Date of Publication2021-
SubjectReal-time processingen
SubjectFinancial dataen
SubjectFlinken
Bibliographic CitationA. Kontaxakis, A. Deligiannakis, H. Arndt, S. Burkard, C.-P. Kettner, E. Pelikan, and K. Noack, “Real-time processing of geo-distributed financial data,” in Proceedings of the 15th ACM International Conference on Distributed and Event-based Systems (DEBS 2021), virtual event, 2021, pp. 190–191, doi: 10.1145/3465480.3467842.en

Available Files

Services

Statistics