Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Fock state-enhanced expressivity of quantum machine learning models

Gan Beng Yee, Leykam Daniel, Angelakis Dimitrios

Simple record


URIhttp://purl.tuc.gr/dl/dias/4515EAC3-A012-49E4-9D7A-4D2F0C81D639-
Identifierhttps://doi.org/10.1140/epjqt/s40507-022-00135-0-
Identifierhttps://epjquantumtechnology.springeropen.com/articles/10.1140/epjqt/s40507-022-00135-0-
Languageen-
Extent23 pagesen
TitleFock state-enhanced expressivity of quantum machine learning modelsen
CreatorGan Beng Yeeen
CreatorLeykam Danielen
CreatorAngelakis Dimitriosen
CreatorΑγγελακης Δημητριοςel
PublisherSpringeren
Content SummaryThe data-embedding process is one of the bottlenecks of quantum machine learning, potentially negating any quantum speedups. In light of this, more effective data-encoding strategies are necessary. We propose a photonic-based bosonic data-encoding scheme that embeds classical data points using fewer encoding layers and circumventing the need for nonlinear optical components by mapping the data points into the high-dimensional Fock space. The expressive power of the circuit can be controlled via the number of input photons. Our work sheds some light on the unique advantages offered by quantum photonics on the expressive power of quantum machine learning models. By leveraging the photon-number dependent expressive power, we propose three different noisy intermediate-scale quantum-compatible binary classification methods with different scaling of required resources suitable for different supervised classification tasks.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2023-07-19-
Date of Publication2022-
SubjectQuantum physicsen
SubjectMachine learningen
SubjectQuantum photonicsen
Bibliographic CitationB. Y. Gan, D. Leykam, and D. G. Angelakis, “Fock state-enhanced expressivity of quantum machine learning models,” EPJ Quantum Technol., vol. 9, no. 1, June 2022, doi: 10.1140/epjqt/s40507-022-00135-0.en

Available Files

Services

Statistics