Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Spatial modeling of precipitation based on data-driven warping of Gaussian processes

Agou Vasiliki, Pavlidis Andreas, Christopoulos Dionysios

Simple record


URIhttp://purl.tuc.gr/dl/dias/8D690926-FF07-44DB-A6B3-4F2A674563DF-
Identifierhttps://doi.org/10.3390/e24030321-
Identifierhttps://www.mdpi.com/1099-4300/24/3/321-
Languageen-
Extent21 pagesen
TitleSpatial modeling of precipitation based on data-driven warping of Gaussian processesen
CreatorAgou Vasilikien
CreatorΑγου Βασιλικηel
CreatorPavlidis Andreasen
CreatorΠαυλιδης Ανδρεαςel
CreatorChristopoulos Dionysiosen
CreatorΧριστοπουλος Διονυσιοςel
PublisherMDPIen
Content SummaryModeling and forecasting spatiotemporal patterns of precipitation is crucial for managing water resources and mitigating water-related hazards. Globally valid spatiotemporal models of precipitation are not available. This is due to the intermittent nature, non-Gaussian distribution, and complex geographical dependence of precipitation processes. Herein we propose a data-driven model of precipitation amount which employs a novel, data-driven (non-parametric) implementation of warped Gaussian processes. We investigate the proposed warped Gaussian process regression (wGPR) using (i) a synthetic test function contaminated with non-Gaussian noise and (ii) a reanalysis dataset of monthly precipitation from the Mediterranean island of Crete. Cross-validation analysis is used to establish the advantages of non-parametric warping for the interpolation of incomplete data. We conclude that wGPR equipped with the proposed data-driven warping provides enhanced flexibility and—at least for the cases studied– improved predictive accuracy for non-Gaussian data.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2023-08-22-
Date of Publication2022-
SubjectNon-Gaussian dataen
SubjectSkewed distributionsen
SubjectGaussian anamorphosisen
SubjectReanalysis dataen
SubjectKrigingen
SubjectWarped Gaussian processesen
Bibliographic CitationV. D. Agou, A. Pavlides, and D. T. Hristopulos, “Spatial modeling of precipitation based on data-driven warping of Gaussian processes,” Entropy, vol. 24, no. 3, Feb. 2022, doi: 10.3390/e24030321.en

Available Files

Services

Statistics