Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Non-parametric kernel-based estimation and simulation of precipitation amount

Pavlidis Andreas, Agou Vasiliki, Christopoulos Dionysios

Simple record


URIhttp://purl.tuc.gr/dl/dias/749E2767-D43A-426D-86AB-8F46F12DF9B3-
Identifierhttps://doi.org/10.1016/j.jhydrol.2022.127988-
Identifierhttps://www.sciencedirect.com/science/article/pii/S0022169422005637-
Languageen-
Extent18 pagesen
TitleNon-parametric kernel-based estimation and simulation of precipitation amounten
CreatorPavlidis Andreasen
CreatorΠαυλιδης Ανδρεαςel
CreatorAgou Vasilikien
CreatorΑγου Βασιλικηel
CreatorChristopoulos Dionysiosen
CreatorΧριστοπουλος Διονυσιοςel
PublisherElsevieren
DescriptionThis research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme “Human Resources Development, Education and Lifelong Learning 2014–2020” in the context of project “Gaussian Anamorphosis with Kernel Estimators for Spatially Distributed Data and Time Series and Applications in the Analysis of Precipitation” (MIS 5052133).en
Content SummaryThe probability distribution of precipitation amount strongly depends on geography, climate zone, and time scale considered. Closed-form parametric probability distributions are not sufficiently flexible to provide accurate and universal models for precipitation amount over different time scales. This paper derives non-parametric estimates of the cumulative distribution function (CDF) of precipitation amount for wet periods. The CDF estimates are obtained by integrating the kernel density estimator leading to semi-explicit CDF expressions for different kernel functions. An adaptive plug-in bandwidth estimator (KCDE) is investigated, using both synthetic data sets and reanalysis precipitation data from the Mediterranean island of Crete (Greece). It is shown that KCDE provides better estimates of the probability distribution than the standard empirical (staircase) estimate and kernel-based estimates that use the normal reference bandwidth. It is also demonstrated that KCDE enables the simulation of non-parametric precipitation amount distributions by means of the inverse transform sampling method.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2023-12-21-
Date of Publication2022-
SubjectPrecipitationen
SubjectKernel estimationen
SubjectSimulationen
SubjectNon-Gaussianen
SubjectReanalysis dataen
SubjectNon-parametric estimateen
Bibliographic CitationA. Pavlides, V. D. Agou, and D. T. Hristopulos, “Non-parametric kernel-based estimation and simulation of precipitation amount,” J. Hydrol., vol. 612, Sep. 2022, 10.1016/j.jhydrol.2022.127988.en

Services

Statistics