Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

A global optimizer inspired from the survival strategies of flying foxes

Zervoudakis Konstantinos, Tsafarakis Stelios

Simple record


URIhttp://purl.tuc.gr/dl/dias/631AAC33-D6FE-42AB-9707-C49B1A7318F8-
Identifierhttps://doi.org/10.1007/s00366-021-01554-w-
Identifierhttps://doi.org/10.1007/s00366-021-01554-w-
Languageen-
Extent34 pagesen
TitleA global optimizer inspired from the survival strategies of flying foxesen
CreatorZervoudakis Konstantinosen
CreatorΖερβουδακης Κωνσταντινοςel
CreatorTsafarakis Steliosen
CreatorΤσαφαρακης Στελιοςel
PublisherSpringer Natureen
DescriptionThis research is co-financed by Greece and the European Union (European Social Fund- ESF) through the Operational Programme «Human Resources Development, Education and Lifelong Learning» in the context of the project “Strengthening Human Resources Research Potential via Doctorate Research” (MIS-5000432), implemented by the State Scholarships Foundation (ΙΚΥ).el
Content SummaryThe aim of the current paper is to introduce a global optimization algorithm, inspired from the survival strategies of flying foxes during a heatwave, called as Flying Foxes Optimization (FFO). The proposed method exploits a Fuzzy Logic (FL) technique to determine the parameters individually for each solution, thus resulting in a parameters-free optimization algorithm. To evaluate FFO, 56 benchmark functions, including the CEC2017 test function suite and three real-world engineering problems, are employed and its performance is compared to those of state-of-the-art metaheuristics, when it comes to global optimization. The comparison results reveal that the proposed FFO optimizer constitutes a powerful attractive alternative for global optimization.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2024-02-08-
Date of Publication2023-
SubjectFlying Foxes Optimizationen
SubjectNature-inspired algorithmen
SubjectGlobal optimizationen
SubjectSelf-tuning algorithmen
SubjectMetaheuristicen
Bibliographic CitationK. Zervoudakis and S. Tsafarakis, “A global optimizer inspired from the survival strategies of flying foxes,” Eng. Comput., vol. 39, no. 2, pp. 1583–1616, Apr. 2023, doi: 10.1007/s00366-021-01554-w.en

Services

Statistics