URI | http://purl.tuc.gr/dl/dias/6EEC4123-F14E-49B5-82C7-D5909C981D17 | - |
Αναγνωριστικό | https://doi.org/10.1103/PhysRevB.106.054210 | - |
Αναγνωριστικό | https://journals.aps.org/prb/abstract/10.1103/PhysRevB.106.054210 | - |
Γλώσσα | en | - |
Μέγεθος | 9 pages | en |
Τίτλος | Persistent homology analysis of a generalized Aubry-André-Harper model | en |
Δημιουργός | He Yu | en |
Δημιουργός | Xia Shiqi | en |
Δημιουργός | Angelakis Dimitrios | en |
Δημιουργός | Αγγελακης Δημητριος | el |
Δημιουργός | Song Daohong | en |
Δημιουργός | Chen Zhigang | en |
Δημιουργός | Leykam Daniel | en |
Εκδότης | American Physical Society | en |
Περιγραφή | This research was supported in part by the Polisimulator project co-financed by Greece and the EU Regional Development Fund. | en |
Περίληψη | Observing critical phases in lattice models is challenging due to the need to analyze the finite time or size scaling of observables. We study how the computational topology technique of persistent homology can be used to characterize phases of a generalized Aubry-André-Harper model. The persistent entropy and mean squared lifetime of features obtained using persistent homology behave similarly to conventional measures (Shannon entropy and inverse participation ratio) and can distinguish localized, extended, and critical phases. However, we find that the persistent entropy also clearly distinguishes ordered from disordered regimes of the model. The persistent homology approach can be applied to both the energy eigenstates and the wave packet propagation dynamics. | en |
Τύπος | Peer-Reviewed Journal Publication | en |
Τύπος | Δημοσίευση σε Περιοδικό με Κριτές | el |
Άδεια Χρήσης | http://creativecommons.org/licenses/by/4.0/ | en |
Ημερομηνία | 2024-02-26 | - |
Ημερομηνία Δημοσίευσης | 2022 | - |
Θεματική Κατηγορία | Anderson localization | en |
Θεματική Κατηγορία | Phase transitions | en |
Θεματική Κατηγορία | Waveguide arrays | en |
Θεματική Κατηγορία | Topology | en |
Βιβλιογραφική Αναφορά | Y. He, S. Xia, D. G. Angelakis, D. Song, Z. Chen and D. Leykam, “Persistent homology analysis of a generalized Aubry-André-Harper model,” Phys. Rev. B, vol. 106, no. 5, Aug. 2022, doi: 10.1103/physrevb.106.054210. | en |