Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Avoiding content bubbles by network-friendly recommendation algorithms

Tzimpimpaki Evangelia

Simple record


URIhttp://purl.tuc.gr/dl/dias/1C0895C1-E524-4706-AEC5-40A6905B5E4C-
Identifierhttps://doi.org/10.26233/heallink.tuc.98885-
Languageen-
Extent87 pagesen
Extent4.6 megabytesen
TitleAvoiding content bubbles by network-friendly recommendation algorithmsen
TitleΑποφυγή «Φυσαλίδων» περιεχομένου σε φιλικούς ως προς το δίκτυο αλγόριθμους συστάσεωνel
CreatorTzimpimpaki Evangeliaen
CreatorΤζιμπιμπακη Ευαγγελιαel
Contributor [Thesis Supervisor]Spyropoulos Thrasyvoulosen
Contributor [Thesis Supervisor]Σπυροπουλος Θρασυβουλοςel
Contributor [Committee Member]Karystinos Georgiosen
Contributor [Committee Member]Καρυστινος Γεωργιοςel
Contributor [Committee Member]Liavas Athanasiosen
Contributor [Committee Member]Λιαβας Αθανασιοςel
PublisherΠολυτεχνείο Κρήτηςel
PublisherTechnical University of Creteen
Academic UnitTechnical University of Crete::School of Electrical and Computer Engineeringen
Academic UnitΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστώνel
Content SummaryAlmost all online services encourage users to establish a profile, granting access to personalized content. Having more and more detailed data from the user, allows for the platforms to detect his interests and to create the content that has the greatest chance for success. However, there are instances when recommendations become excessively personalized, especially in (cache-friendly) systems also guiding suggestions towards content with low access cost. This can lead the user in a state where they are consistently presented with content of a singular nature, which may or may not sustain his interest in the long run. This thesis aims to improve recommendation systems, by increasing the diversity of recommended content, thus preventing the creation of content bubbles. First, an overview is provided, initiating with the exposition of Baseline Recommendation Systems (BS-RS), their evolution into Network-Friendly Recommendation Systems (NF-RS), and the representation of the content bubble phenomenon in NF-RS. The setup of BS-RS and NF-RS as optimization problems is detailed, and the introduced Diverse NF-RS is presented, addressing the content bubble phenomenon. The optimization problem for Diverse NF-RS is formulated, demonstrated to be convex, and linearized before being solved. No previously established implementation adequately addresses the diversity issue with comparable cost-diversity trade-offs. The proposed solution incorporates additional fairness metrics from other works, establishing that our proposed Recommendation System can accommodate them without compromising the favourable trade-offs achieved.en
Content SummaryΣχεδόν όλες οι διαδικτυακές υπηρεσίες ενθαρρύνουν τους χρήστες να δημιουργήσουν ένα προφίλ, παρέχοντάς τους έτσι πρόσβαση σε εξατομικευμένο περιεχόμενο. Αντλώντας συνεχώς λεπτομερή δεδομένα από το χρήστη, οι πλατφόρμες εντοπίζουν τα ενδιαφέροντά του, και συστήνουν στο χρήστη όλο και πιο πετυχημένο περιεχόμενο - δηλαδή, σχετικό με τις προτιμήσεις του. Ωστόσο, υπάρχουν περιπτώσεις όπου οι συστάσεις γίνονται υπερβολικά προσωποποιημένες, ειδικά στα συστήματα γνωστά ως ``φιλικά προς το δίκτυο''. Τέτοιου είδους συστήματα προσπαθούν να συστήσουν πετυχημένο περιεχόμενο, αλλά παράλληλα ωθούν και τους χρήστες προς περιεχόμενα με χαμηλό κόστος πρόσβασης (πχ. που βρίσκονται στην cache). Αυτό μπορεί να οδηγήσει το χρήστη σε μία κατάσταση όπου του παρουσιάζονται μόνιμα συστάσεις ενός συγκεκριμένου χαρακτήρα, διατηρώντας ή όχι το ενδιαφέρον του μακροπρόθεσμα. Η παρούσα διπλωματική εργασία στοχεύει στη βελτίωση των συστημάτων συστάσεων, μέσω της αύξησης της ποικιλομορφίας του προτεινόμενου περιεχομένου, αποτρέποντας έτσι τη δημιουργία του φαινομένου γνωστού ως ``φυσαλίδες περιεχομένου''. Ξεκινάμε με την παρουσίαση των τυπικών συστημάτων συστάσεων, την εξέλιξή τους σε ``φιλικά προς το δίκτυο'' συστήματα συστάσεων, και την αναπαράσταση του φαινομένου των ``φυσαλιδών περιεχομένου'' στα δεύτερα. Εισάγουμε τα ``ποικίλα, φιλικά προς το δίκτυο συστήματα συστάσεων'', τα οποία στοχεύουν στην παράλληλη επίτευξη ικανοποιητικών συστάσεων, χαμηλού κόστους και υψηλής ποικιλομορφίας. Αφού διατυπώσουμε τη λειτουργία αυτών των συστημάτων ως πρόβλημα βελτιστοποίησης, αποδεικνύουμε ότι το πρόβλημα αυτό είναι κυρτό, και το γραμμικοποιούμε πριν το επιλύσουμε. Από όσο γνωρίζουμε, δεν υπάρχει αντίστοιχη υλοποίηση στη σχετική βιβλιογραφία η οποία να αντιμετωπίζει το ίδιο φαινόμενο επαρκώς, ενώ μάλιστα το σύστημα που δημιουργήσαμε αποδεδειγμένα επιφέρει πολύ καλή αντιστάθμιση κόστους-ποικιλομορφίας. Τέλος, το σύστημά μας επιτρέπει την ενσωμάτωση επιπλέον παραμέτρων (άλλων ερευνών), χωρίς να διακυβεύονται τα ευνοϊκά αποτελέσματα που επιτυγχάνει.el
Type of ItemΔιπλωματική Εργασίαel
Type of ItemDiploma Worken
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2024-02-29-
Date of Publication2024-
SubjectΣειρές Τέιλορel
SubjectTaylor Seriesen
SubjectDiverse recommendationsen
SubjectΠοικίλες συστάσειςel
SubjectLinear approximationen
SubjectΓραμμική προσέγγισηel
SubjectEntropyen
SubjectΕντροπίαel
SubjectNetwork friendlyen
SubjectRecommendation systemsen
SubjectΣυστήματα συστάσεωνel
SubjectConvex optimizationen
SubjectΚυρτή βελτιστοποίησηel
SubjectΜαρκοβιανές αλυσίδεςel
SubjectMarkov chainsen
Bibliographic CitationEvangelia Tzimpimpaki, "Avoiding content bubbles by network-friendly recommendation algorithms", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2024en
Bibliographic CitationΕυαγγελία Τζιμπιμπάκη, "Αποφυγή «Φυσαλίδων» περιεχομένου σε φιλικούς ως προς το δίκτυο αλγόριθμους συστάσεων", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2024el

Available Files

Services

Statistics