URI | http://purl.tuc.gr/dl/dias/925D9D6C-09B5-40B4-86A2-B09D2B0D29B9 | - |
Identifier | https://doi.org/10.1007/s00234-022-02924-x | - |
Identifier | https://link.springer.com/article/10.1007/s00234-022-02924-x | - |
Language | en | - |
Extent | 12 pages | en |
Title | Converging evidence of impaired brain function in systemic lupus erythematosus: changes in perfusion dynamics and intrinsic functional connectivity | en |
Creator | Papadaki Efrosini | en |
Creator | Simos Nikolaos-Ioannis | en |
Creator | Σιμος Νικολαος-Ιωαννης | el |
Creator | Kavroulakis Eleftherios | en |
Creator | Bertsias George | en |
Creator | Antypa Despina | en |
Creator | Fanouriakis Antonis | en |
Creator | Maris Thomas | en |
Creator | Sidiropoulos Prodromos | en |
Creator | Boumpas Dimitrios T. | en |
Publisher | Springer | en |
Description | Financial support for this work was provided by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the “2nd Call for H.F.R.I. Research Projects to support Post-Doctoral Researchers” (Project Number: 1220). | en |
Content Summary | Purpose
Τhe study examined changes in hemodynamics and functional connectivity in patients with systemic lupus erythematosus (SLE) with or without neuropsychiatric manifestations.
Methods
Participants were 44 patients with neuropsychiatric SLE (NPSLE), 20 SLE patients without such manifestations (non-NPSLE), and 35 healthy controls. Resting-state functional MRI (rs-fMRI) was used to obtain whole-brain maps of (a) perfusion dynamics derived through time shift analysis (TSA), (b) regional functional connectivity (intrinsic connectivity contrast (ICC) coefficients), and (c) hemodynamic-connectivity coupling. Group differences were assessed through independent samples t-tests, and correlations of rs-fMRI indices with clinical variables and neuropsychological test scores were, also, computed.
Results
Compared to HC, NPSLE patients demonstrated intrinsic hypoconnectivity of anterior Default Mode Network (DMN) and hyperconnectivity of posterior DMN components. These changes were paralleled by elevated hemodynamic lag. In NPSLE, cognitive performance was positively related to higher intrinsic connectivity in these regions, and to higher connectivity-hemodynamic coupling in posterior DMN components. Uncoupling between hemodynamics and connectivity in the posterior DMN was associated with worse task performance. Non-NPSLE patients displayed hyperconnectivity in posterior DMN and sensorimotor regions paralleled by relatively increased hemodynamic lag.
Conclusion
Adaptation of regional brain function to hemodynamic changes in NPSLE may involve locally decreased or locally increased intrinsic connectivity (which can be beneficial for cognitive function). This process may also involve elevated coupling of hemodynamics with functional connectivity (beneficial for cognitive performance) or uncoupling, which may be detrimental for the cognitive skills of NPSLE patients. | en |
Type of Item | Peer-Reviewed Journal Publication | en |
Type of Item | Δημοσίευση σε Περιοδικό με Κριτές | el |
License | http://creativecommons.org/licenses/by/4.0/ | en |
Date of Item | 2024-03-04 | - |
Date of Publication | 2022 | - |
Subject | Neuropsychiatric lupus | en |
Subject | Resting-state fMRI | en |
Subject | Cerebral perfusion | en |
Subject | Time shift analysis | en |
Subject | Intrinsic connectivity coefficient | en |
Subject | Visuomotor capacity | en |
Bibliographic Citation | E. Papadaki, N. J. Simos, E. Kavroulakis, G. Bertsias, D. Antypa, A. Fanouriakis, T. Maris, P. Sidiropoulos and D. T. Boumpas “Converging evidence of impaired brain function in systemic lupus erythematosus: changes in perfusion dynamics and intrinsic functional connectivity,” Neuroradiology, vol. 64, no. 8, pp. 1593–1604, Aug. 2022, doi: 10.1007/s00234-022-02924-x. | en |