Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Simulation of spiral bevel gear manufacturing by face hobbing and prediction of the cutting forces using a novel CAD-based model

Efstathiou Charikleia, Tapoglou Nikolaos

Simple record


URIhttp://purl.tuc.gr/dl/dias/BDCC228E-5BC9-42EE-A2EC-8FF54CC1A952-
Identifierhttps://doi.org/10.1007/s00170-022-10065-x-
Identifierhttps://link.springer.com/article/10.1007/s00170-022-10065-x-
Languageen-
Extent25 pagesen
TitleSimulation of spiral bevel gear manufacturing by face hobbing and prediction of the cutting forces using a novel CAD-based modelen
CreatorEfstathiou Charikleiaen
CreatorΕυσταθιου Χαρικλειαel
CreatorTapoglou Nikolaosen
PublisherSpringeren
DescriptionThis study is funded as part of NSRF 2014–2020 by the State Scholarships Foundation of Greece, through the doctoral scholarship awarded to Chara Efstathiou.en
Content SummaryThe BevelSim3D algorithm has been developed for the simulation of spiral bevel gear manufacturing. The model aims to achieve the 3D kinematic simulation of face milling and face hobbing, the generation of the undeformed solid chip geometry, and the solid tooth flank geometry. In addition, another novel calculation algorithm, called BevelForce3D, has been developed to calculate the cutting forces using the aforementioned produced undeformed chip geometries. The simulation results are validated with the geometric comparison of the simulated tooth flank geometry with the theoretical gear geometry, via the novel validation algorithm BevelCurve3D. The simulation methodology for face milling has been already described by the authors in previous work. The current study extends the functionality of the simulation model with the introduction of the face hobbing simulation and the calculation of cutting forces. Results including solid tooth flank geometry, solid chip geometry, and calculated cutting forces are presented and discussed in the paper. Investigation of the effect of crucial cutting parameters, such as generating feedrate, on the quality of the produced surface, is included in the results. Finally, the effect of three parameters, i.e., finishing stock allowance, plunge feedrate, and generating feedrate, on the undeformed chip geometry and thus the developed cutting forces, is investigated.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2024-04-11-
Date of Publication2022-
SubjectSpiral bevel gearsen
SubjectFace hobbingen
Subject3D kinematic simulationen
SubjectCADen
SubjectCutting forcesen
Bibliographic CitationC. Efstathiou and N. Tapoglou, “Simulation of spiral bevel gear manufacturing by face hobbing and prediction of the cutting forces using a novel CAD-based model,” Int. J. Adv. Manuf. Technol., vol. 122, no. 9–10, pp. 3789–3813, Oct. 2022, doi: 10.1007/s00170-022-10065-x.en

Services

Statistics