Το work with title Modeling and energy assessment of a building utilizing natural building methods by Vlatitsi Panagiota-Lydia is licensed under Creative Commons Attribution 4.0 International
Bibliographic Citation
Panagiota-Lydia Vlatitsi, "Modeling and energy assessment of a building utilizing natural building methods", Diploma Work, School of Chemical and Environmental Engineering, Technical University of Crete, Chania, Greece, 2024
https://doi.org/10.26233/heallink.tuc.99779
The current research examines the energy footprint and the possibilities offered by the conservation and proper utilization of the natural environment in sunstainable construction techniques, as well as the structural and morphological characteristics of this particular type of construction, within the framework of its evaluation as an element of sustainable development. The three residences are located in the Municipality of Apokoronas, in the regional community of Crete, and their construction is based on alternative building methods using natural materials such as raw brick and straw, which were locally handcrafted. Analysis of the auxiliary materials was deemed necessary to contribute to energy resource conservation, as their production and application methods are based on green bioclimatic design principles. This technique was carried out within the principles of bioclimatic architecture, aiming to present a minimal energy footprint and create interdependent buildings with the environment, capable of adapting to it without causing harm. Initially, the buildings were modeled in SketchUp-Open Studio software is based on the corresponding floor plans in AutoCAD. Subsequently, using the OpenStudio software, appropriate data inputs were made regarding the meteorological conditions of the respective area, the characteristics of the building materials used, the energy consumption of the buildings, and the uses of each thermal zone. A comparison was made between the actual temperature values, calculated through sensors in each space, and those of the modeled values obtained from the program to study the convergence rate. Then, new scenarios of the modeled buildings were created, including loads and data based on space usage conditions. Energy consumption calculations required, and internal temperature adjustments were made over a one-year period, while CO2 emissions were calculated based on literature references. The energy consumption results obtained from the program are as follows: The energy requirements in the Vafe residence amount to 4350 kWh, given that it does not have heating and cooling systems, with CO2 emissions of 48 kg/m2. After energy upgrading, energy requirements amount to 2851 kWh, with a 35% improvement rate, and CO2 emissions reduced to 4.28 kg/m2. The energy requirements in the Neo Horio residence amount to 15578 kWh, as there is a heating system, with CO2 emissions of 106.28 kg/m2. In the upgraded scenario, energy requirements decrease to 9752 kWh, with a 37% improvement rate, and CO2 emissions reduced to 101 kg/m2. Finally, in the case of the Educational and Research Center in Drapanos, energy requirements amount to 9697 kWh, given that there are no heating and cooling systems, with CO2 emissions of 39 kg/m2. After scenario energy upgrading, energy requirements decrease to 6931 kWh, with a 28% improvement rate, and CO2 emissions reduced to 31 kg/m2.