Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Εντοπισμός πηγών ηλεκτροεγκεφαλογραφήματος διαφορετικών ρεαλιστικών ανατομιών εγκεφάλου με τη χρήση τεχνικών βαθιάς μάθησης

Kolomvaki Afroditi

Απλή Εγγραφή


URIhttp://purl.tuc.gr/dl/dias/769A274A-D943-4C61-9DF3-BF88EE137E5D-
Αναγνωριστικόhttps://doi.org/10.26233/heallink.tuc.99945-
Γλώσσαen-
Μέγεθος88 pagesen
ΤίτλοςEEG source localization on different realistic brain anatomies using deep learning techniquesen
ΤίτλοςΕντοπισμός πηγών ηλεκτροεγκεφαλογραφήματος διαφορετικών ρεαλιστικών ανατομιών εγκεφάλου με τη χρήση τεχνικών βαθιάς μάθησηςel
ΔημιουργόςKolomvaki Afroditien
ΔημιουργόςΚολομβακη Αφροδιτηel
Συντελεστής [Επιβλέπων Καθηγητής]Zervakis Michailen
Συντελεστής [Επιβλέπων Καθηγητής]Ζερβακης Μιχαηλel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Liavas Athanasiosen
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Λιαβας Αθανασιοςel
Συντελεστής [Μέλος Εξεταστικής Επιτροπής]Wolters Carsten H.‏ en
ΕκδότηςΠολυτεχνείο Κρήτηςel
ΕκδότηςTechnical University of Creteen
Ακαδημαϊκή ΜονάδαTechnical University of Crete::School of Electrical and Computer Engineeringen
Ακαδημαϊκή ΜονάδαΠολυτεχνείο Κρήτης::Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστώνel
ΠερίληψηElectroencephalography (EEG) is a technique used to record the electrical activity of the brain and is commonly used in medical settings to diagnose and monitor conditions such as epilepsy, sleep disorders, and brain injuries. It involves placing electrodes on the scalp, which detect the electrical signals produced by the brain. One of the main challenges in interpreting these EEG signals is to identify the underlying neural sources responsible for generating the measured scalp potentials. This is known as EEG source analysis or EEG inverse problem. Various numerical methods exist to address this inverse problem, but they require considerable computational time and often depend heavily on prior assumptions. Recently, neural networks have been suggested as a solution, but their training often relies on suboptimal forward modeling and they struggle to localize EEG signals across different brain anatomies and multiple brain electrical activations. In this study, we introduce a Convolutional Neural Network (CNN) architecture that is independent of the brain source space model and trained using realistic head models calibrated for skull conductivity. It is capable of solving the inverse problem for up to three active brain sources on different realistic brain anatomies. The results indicate that our CNN outperforms traditional numerical methods like sLORETA.en
ΠερίληψηΤο ηλεκτροεγκεφαλογάφημα είναι μια μέθοδος που χρησιμοποιείται για τη καταγραφή της ηλεκτρικής δραστηριότητας του εγκεφάλου και χρησιμοποιείται για τη διαγνωση και παρακολούθηση παθήσεων όπως η επιληψία, οι διαταραχές ύπνου ή και οι κρανιοεγκεφαλικες κακώσεις. Η καταγραφή αυτή των ηλεκτρικών σημάτων που παράγει ο εγκέφαλος γίνεται με τη χρήση ηλεκτροδίων, τα οποία τοποθετούνται πάνω στο δέρμα της κεφαλής. Μια από τις κύριες δυσκολίες όσον αφορά την ερμηνεία αυτών των σημάτων, είναι η ταυτοποίηση των περιοχών μέσα στον εγκέφαλο που εμφάνισαν ηλεκτρική δραστηριότητα και προκάλεσαν τις αντίστοιχες μετρήσεις στο ηλεκτροεγκεφαλογάφημα. Αυτό είναι γνωστό ως το αντίστροφο πρόβλημα. Υπάρχουν πολλές μέθοδοι για την επίλυση του αντίστροφου προβλήματος αλλά απαιτούν πολύ υπολογιστικό χρόνο ή εξαρτώνται σε μεγάλο βαθμό από υποθέσεις που μπορεί να μην είναι σωστές και ακριβείς. Πρόσφατα, τα νευρωνικά δίκτυα έχουν προταθεί σαν μια λύση του αντίστροφου προβλήματος αλλά η εκπαίδευση τους συχνά βασίζεται σε υποβέλτιστη μοντελοποίηση του προβλήματος, ενω παράλληλα δυσκολεύονται να λύσουν το αντίστροφο πρόβλημα σε διαφορετικές ανατομίες εγκεφάλου και στην περίπτωση που παραπάνω απο μια πηγές παρουσιάζουν εγκεφαλική δραστηριότητα. Σε αυτή τη διπλωματική, παρουσιάζουμε ενα συνελικτικό νευρωνικό δίκτυο, το οποίο έχει εκπαιδευτεί σε διαφορετικές ρεαλιστικές ανατομίες εγκεφάλου και μπορεί να λύσει το αντίστροφο πρόβλημα για εως και τρείς πηγές στον εγκέφαλο σε διαφορετικές ρεαλιστικές ανατομίες. Σύμφωνα με τα αποτελέσματα, η μέθοδος μας αποδίδει καλύτερα σε σχέση με παραδοσιακές αριθμιτικές μεθόδους οπως η sLORETA.el
ΤύποςΔιπλωματική Εργασίαel
ΤύποςDiploma Worken
Άδεια Χρήσηςhttp://creativecommons.org/licenses/by/4.0/en
Ημερομηνία2024-06-12-
Ημερομηνία Δημοσίευσης2024-
Θεματική ΚατηγορίαMultiple sourcesen
Θεματική ΚατηγορίαAnalysisen
Θεματική ΚατηγορίαSourceen
Θεματική ΚατηγορίαEEGen
Βιβλιογραφική ΑναφοράAfroditi Kolomvaki, "EEG source localization on different realistic brain anatomies using deep learning techniques", Diploma Work, School of Electrical and Computer Engineering, Technical University of Crete, Chania, Greece, 2024en
Βιβλιογραφική ΑναφοράΑφροδίτη Κολομβάκη, "Εντοπισμός πηγών ηλεκτροεγκεφαλογραφήματος διαφορετικών ρεαλιστικών ανατομιών εγκεφάλου με τη χρήση τεχνικών βαθιάς μάθησης", Διπλωματική Εργασία, Σχολή Ηλεκτρολόγων Μηχανικών και Μηχανικών Υπολογιστών, Πολυτεχνείο Κρήτης, Χανιά, Ελλάς, 2024el

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά