Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

A goal programming model for a sustainable biomass supply chain network

Grigoroudis Evangelos, Αραμπατζής Γαρύφαλλος, Petridis Konstantinos

Simple record


URIhttp://purl.tuc.gr/dl/dias/AF56E5AB-5E2C-48CA-A481-A1C25EF2A4A7-
Identifierhttp://www.emeraldinsight.com/doi/full/10.1108/IJESM-09-2017-0002-
Identifierhttps://doi.org/10.1108/IJESM-09-2017-0002-
Languageen-
Extent24 pagesen
TitleA goal programming model for a sustainable biomass supply chain networken
CreatorGrigoroudis Evangelosen
CreatorΓρηγορουδης Ευαγγελοςel
CreatorΑραμπατζής Γαρύφαλλοςel
CreatorArabatzis Garyfallosen
CreatorPetridis Konstantinosen
CreatorΠετρίδης Κωνσταντίνοςel
PublisherEmeralden
Content SummaryPurpose – The design of a biomass supply chain is a problem where multiple stakeholders with often conflicting objectives are involved. To accommodate the aspects stakeholder, the supply chain design should incorporate multiple objectives. In addition to the supply chain design, the management of energy from biomass is a demanding task, as the operation of production of biomass products needs to be aligned with the rest of the operations of the biomass supply chain. The purpose of the paper is to propose a mathematical framework for the optimal design of biomass supply chain. Design/methodology/approach – An integrated mathematical framework that models biomass production, transportation and warehousing throughout the nodes of a biomass supply chain is presented. Owing to conflicting objectives, weights are imposed on each aspect, and a 0-1 weighted goal programming mixed-integer linear programming (WGP MILP) programming model is formulated and used for all possible weight representations under environmental, economic and social criteria. Findings – The results of the study show that emphasis on the environmental aspect, expressed with high values in the environmental criterion, significantly reduces the level of CO2 emissions derived from the transportation of biomass through the various nodes of the supply chain. Environmental and economic criteria seem to be moving in the same direction for high weight values in the corresponding aspect. From the results, social criterion seems to move to the opposite direction from environmental and economic criteria. Originality/value – An integrated mathematical framework is presented modeling biomass production, transportation and warehousing. To the best of the authors' knowledge, such a model that integrates multiple objectives with supply chain design has not yet been published.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2018-03-05-
Date of Publication2018-
SubjectBiomassen
SubjectDecision-makingen
SubjectEnergy sectoren
SubjectInteger programmingen
SubjectLinear programmingen
SubjectMixed integer programmingen
SubjectModellingen
SubjectOptimizationen
SubjectRenewable energiesen
SubjectScenario analysisen
Bibliographic CitationK. Petridis, E. Grigoroudis and G. Arabatzis, "A goal programming model for a sustainable biomass supply chain network", Int. J. Energy Sect. Manag., vol. 12, no. 1. pp. 79-102, 2018. doi: 10.1108/IJESM-09-2017-0002 en

Services

Statistics