Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Sonochemical degradation of ethyl paraben in environmental samples: statistically important parameters determining kinetics, by-products and pathways

Papadopoulos Costas, Frontistis Zacharias, Antonopoulou Maria, Venieri Danai, Konstantinou, Ioannis K, Mantzavinos Dionysis

Simple record


URIhttp://purl.tuc.gr/dl/dias/87AC87DF-6EBB-4A8F-8D6A-F916E575BE0F-
Identifierhttps://doi.org/10.1016/j.ultsonch.2015.12.002-
Identifierhttps://www.sciencedirect.com/science/article/pii/S135041771530095X?via%3Dihub-
Languageen-
Extent9 pagesen
TitleSonochemical degradation of ethyl paraben in environmental samples: statistically important parameters determining kinetics, by-products and pathwaysen
CreatorPapadopoulos Costasen
CreatorFrontistis Zachariasen
CreatorAntonopoulou Mariaen
CreatorVenieri Danaien
CreatorΒενιερη Δαναηel
CreatorKonstantinou, Ioannis Ken
CreatorMantzavinos Dionysisen
CreatorΜαντζαβινος Διονυσηςel
PublisherElsevieren
Content SummaryThe sonochemical degradation of ethyl paraben (EP), a representative of the parabens family, was investigated. Experiments were conducted at constant ultrasound frequency of 20 kHz and liquid bulk temperature of 30 °C in the following range of experimental conditions: EP concentration 250-1250 μg/L, ultrasound (US) density 20-60 W/L, reaction time up to 120 min, initial pH 3-8 and sodium persulfate 0-100 mg/L, either in ultrapure water or secondary treated wastewater. A factorial design methodology was adopted to elucidate the statistically important effects and their interactions and a full empirical model comprising seventeen terms was originally developed. Omitting several terms of lower significance, a reduced model that can reliably simulate the process was finally proposed; this includes EP concentration, reaction time, power density and initial pH, as well as the interactions (EP concentration) × (US density), (EP concentration) × (pHo) and (EP concentration) × (time). Experiments at an increased EP concentration of 3.5 mg/L were also performed to identify degradation by-products. LC-TOF-MS analysis revealed that EP sonochemical degradation occurs through dealkylation of the ethyl chain to form methyl paraben, while successive hydroxylation of the aromatic ring yields 4-hydroxybenzoic, 2,4-dihydroxybenzoic and 3,4-dihydroxybenzoic acids. By-products are less toxic to bacterium V. fischeri than the parent compound.en
Type of ItemPeer-Reviewed Journal Publicationen
Type of ItemΔημοσίευση σε Περιοδικό με Κριτέςel
Licensehttp://creativecommons.org/licenses/by/4.0/en
Date of Item2018-10-10-
Date of Publication2016-
SubjectAqueous matrixen
SubjectEstrogenicityen
SubjectFactorial designen
SubjectIntermediatesen
SubjectMicro-pollutantsen
SubjectSonodegradationen
Bibliographic CitationC. Papadopoulos, Z. Frontistis, M. Antonopoulou, D. Venieri, I. Konstantinou and D. Mantzavinos, "Sonochemical degradation of ethyl paraben in environmental samples: statistically important parameters determining kinetics, by-products and pathways," Ultrason. Sonochem., vol. 31, pp. 62-70, Jul. 2016. doi: 10.1016/j.ultsonch.2015.12.002en

Services

Statistics