Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

A multi-species investigation of sponges’ filtering activity towards marine microalgae

Varamogianni- Mamatsi Despoina, Anastasiou Thekla I., Vernadou Emmanouela, Papandroulakis Nikos, Kalogerakis Nikos, Dailianis, Thanos, Mandalakis Manolis

Full record


URI: http://purl.tuc.gr/dl/dias/37E39216-8764-45CF-B830-DB6588C1CF1F
Year 2022
Type of Item Peer-Reviewed Journal Publication
License
Details
Bibliographic Citation D. Varamogianni-Mamatsi, T. I. Anastasiou, E. Vernadou, N. Papandroulakis, N. Kalogerakis, T. Dailianis, and M. Mandalakis, “A multi-species investigation of sponges’ filtering activity towards marine microalgae,” Mar. Drugs, vol. 20, no. 1, Jan. 2022, doi: 10.3390/md20010024. https://doi.org/10.3390/md20010024
Appears in Collections

Summary

Chronic discharge of surplus organic matter is a typical side effect of fish aquaculture, occasionally leading to coastal eutrophication and excessive phytoplankton growth. Owing to their innate filter-feeding capacity, marine sponges could mitigate environmental impact under integrated multitrophic aquaculture (IMTA) scenarios. Herein, we investigated the clearance capacity of four ubiquitous Mediterranean sponges (Agelas oroides, Axinella cannabina, Chondrosia reniformis and Sarcotragus foetidus) against three microalgal substrates with different size/motility characteristics: the nanophytoplankton Nannochloropsis sp. (~3.2 μm, nonmotile) and Isochrysis sp. (~3.8 μm, motile), as well as the diatom Phaeodactylum tricornutum (~21.7 μm, nonmotile). In vitro cleaning experiments were conducted using sponge explants in 1 L of natural seawater and applying different microalgal cell concentrations under light/dark conditions. The investigated sponges exhibited a wide range of retention efficiencies for the different phytoplankton cells, with the lowest average values found for A. cannabina (37%) and the highest for A. oroides (70%). The latter could filter up to 14.1 mL seawater per hour and gram of sponge wet weight, by retaining 100% of Isochrysis at a density of 105 cells mL−1, under darkness. Our results highlight differences in filtering capacity among sponge species and preferences for microalgal substrates with distinct size and motility traits.

Available Files

Services

Statistics