Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Application of a handheld X-ray fluorescence analyzer for the quantification of air particulate matter on Teflon filters

Chatoutsidou Sofia-Eirini, Papagiannis Stefanos, Anagnostopoulos Dimitrios F., Eleftheriadis Konstantinos, Lazaridis Michail, Karydas Andreas G.

Full record


URI: http://purl.tuc.gr/dl/dias/9EBB8D1F-CD03-4431-85E2-600EC8D6E2D6
Year 2022
Type of Item Peer-Reviewed Journal Publication
License
Details
Bibliographic Citation S. E. Chatoutsidou, S. Papagiannis, D. F. Anagnostopoulos, K. Eleftheriadis, M. Lazaridis, and A. G. Karydas, “Application of a handheld X-ray fluorescence analyzer for the quantification of air particulate matter on Teflon filters,” Spectrochim. Acta, Part B, vol. 196, Oct. 2022, doi: 10.1016/j.sab.2022.106517. https://doi.org/10.1016/j.sab.2022.106517
Appears in Collections

Summary

Elemental characterization of air particulate matter samples through the application of X-ray fluorescence (XRF) spectrometry is a widespread analytical technique. This work presents the optimization and calibration methodology of a handheld XRF spectrometer and its subsequent application in elemental quantification of unknown particulate matter samples. The optimization of the handheld spectrometer was conducted through investigation of the elemental sensitivities and Limits of Detection (LoD) at variable excitation conditions (voltage, filter). Accordingly, five optimum operating conditions were obtained each one targeted in different elemental range: 1) Z = 11–12, 2) 12 < Z < 17, 3) 16 < Z < 23, 4) 22 < Z < 31 and 5) 30 < Z < 92. Subsequently, a number of reference (5 multi-element and 42 compound/single-element) materials were used to obtain calibration curves for 24 elements (Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Br, Rb, Sr, Pb). Weighted least-square regression analysis was implemented to best fit the experimentally measured intensities with mass loadings resulting for most of the elements to high correlations (Pearson r > 0.98) and low statistical error. In addition, intercomparison of the elemental concentrations from 28 unknown particulate matter samples between the handheld and a benchtop XRF spectrometer showed good agreement.

Services

Statistics