Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Identification of fraudulent financial statements using data mining techniques

Tragouda Maria

Full record


URI: http://purl.tuc.gr/dl/dias/9B5379D5-7D2A-421A-91F1-F9761FE1E9D8
Year 2024
Type of Item Doctoral Dissertation
License
Details
Bibliographic Citation Maria Tragouda, "Identification of fraudulent financial statements using data mining techniques", Doctoral Dissertation, School of Production Engineering and Management, Technical University of Crete, Chania, Greece, 2024 https://doi.org/10.26233/heallink.tuc.100454
Appears in Collections

Summary

Although the financial audit controls in companies have advanced over the years, the number of corporate fraud instances is growing, thus raising the need for investigating the factors that can be used as early-warning signals and developing effective systems for identifying financial fraud. In this thesis, financial statements from 133 Greek companies listed in the Athens Stock Exchange over the period 2014 to 2019 are investigated, based on the fraud diamond theory. Financial data and corporate governance variables are used as inputs to data mining techniques to develop models that can identify patterns of irregularities in a company’s financial reports. To this end popular machine learning classification algorithms are employed in a novel multi-label classification setting that not only identifies fraudulent cases, but also considers the nature of the auditors’ comments. The results indicate that the proposed multi-label approach provides enhanced results compared to binary classification algorithms, avoiding inconsistent outputs with respect to the existence of different forms of manipulation of financial statements.

Available Files

Services

Statistics