Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

On computation of approximate solutions to large-scale backstepping kernelequations via continuum approximation

Humaloja Jukka-Pekka Gabriel, Bekiaris-Liberis Nikolaos

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/824844C7-4635-47BE-AB9C-6C71B606C9EF
Έτος 2025
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά J.-P. Humaloja and N. Bekiaris-Liberis, “On computation of approximate solutions to large-scale backstepping kernel equations via continuum approximation,” 2024, arXiv: 2406.13612. https://doi.org/10.1016/j.sysconle.2024.105982
Εμφανίζεται στις Συλλογές

Περίληψη

We provide two methods for computation of continuum backstepping kernels that arise in control of continua (ensembles) of linear hyperbolic PDEs and which can approximate backstepping kernels arising in control of a large-scale, PDE systemcounterpart (with computational complexity that does not grow with the number of state components of the large-scale system). In the first method, we provide explicit formulae for the solution to the continuum kernels PDEs, employinga (triple) power series representation of the continuum kernel and establishing its convergence properties. In this case, we also provide means for reducing computational complexity by properly truncating the power series (in the powers ofthe ensemble variable). In the second method, we identify a class of systems for which the solution to the continuum (and hence, also an approximate solution to the respective large-scale) kernel equations can be constructed in closedform. We also present numerical examples to illustrate computational efficiency/accuracy of the approaches, as well as to validate the stabilization properties of the approximate control kernels, constructed based on the continuum.

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά