Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Soft sensing of LPG processes using deep learning

Sifakis Nikolaos, Sarantinoudis Nikolaos, Tsinarakis Georgios, Politis Christos, Arampatzis Georgios

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/0FD7E0E4-71CB-4864-82A7-4B3AE98F5320
Έτος 2023
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά N. Sifakis, N. Sarantinoudis, G. Tsinarakis, C. Politis and G. Arampatzis, “Soft sensing of LPG processes using deep learning,” Sensors, vol. 23, no. 18, Sep. 2023, doi: 10.3390/s23187858. https://doi.org/10.3390/s23187858
Εμφανίζεται στις Συλλογές

Περίληψη

This study investigates the integration of soft sensors and deep learning in the oil-refinery industry to improve monitoring efficiency and predictive accuracy in complex industrial processes, particularly de-ethanization and debutanization. Soft sensor models were developed to estimate critical variables such as the C2 and C5 contents in liquefied petroleum gas (LPG) after distillation and the energy consumption of distillation columns. The refinery’s LPG purification process relies on periodic sampling and laboratory analysis to maintain product specifications. The models were tested using data from actual refinery operations, addressing challenges such as scalability and handling dirty data. Two deep learning models, an artificial neural network (ANN) soft sensor model and an ensemble random forest regressor (RFR) model, were developed. This study emphasizes model interpretability and the potential for real-time updating or online learning. The study also proposes a comprehensive, iterative solution for predicting and optimizing component concentrations within a dual-column distillation system, highlighting its high applicability and potential for replication in similar industrial scenarios.

Διαθέσιμα αρχεία

Υπηρεσίες

Στατιστικά