Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

A backpropagation neural network model for semi-rigid steel connections

Stavroulakis Georgios, K. M. Abdalla

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/5027A657-10BA-455C-A22E-0E706116BB96
Έτος 1995
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά K. M. Abdalla , G. E. Stavroulakis ," A backpropagation neural network model for semi-rigid steel connections,"Computer-Aided Civil and Infrast. Engin., vol. 10, no. 2,pp. 77–87, March 1995.doi:10.1111/j.1467-8667.1995.tb00271.x https://doi.org/10.1111/j.1467-8667.1995.tb00271.x
Εμφανίζεται στις Συλλογές

Περίληψη

The analysis of semirigid steel structure connections based on exact theoretical modeling, which is demanding and time consuming if all the nonlinear parameters of the problem are taken into account, can be avoided provided that enough experimental measurements exist and an appropriate predictor can be constructed from them. A supervised learning backpropagation neural network approach is proposed in this paper for the construction of this model free predictor. A number of experimental momentrotation curves for single-angle and single-plate beam-to-column connections are used in this paper to train the neural network. The trained network provides us with an estimator for the mechanical behavior of the steel structure connection element.

Υπηρεσίες

Στατιστικά