Το work with title Interfacial debonding in composites via mathematical programming methods; the material inclusion problem for lubricated and non-lubricated interfaces by Stavroulakis Georgios, Panagiotopoulos, P. D., 1950-, Koltsakis, Efthymios K, S.A. Georgiadis is licensed under Creative Commons Attribution 4.0 International
Bibliographic Citation
S.A. Georgiadis, G.E. Stavroulakis, E.K. Koltsakis, P.D. Panagiotopoulos,"Interfacial debonding in composites via mathematical programming methods; the material inclusion problem for lubricated and non-lubricated interfaces," Comp. and Struct.s vol. 34, no. 5, pp. 735–752,1990.doi: 10.1016/0045-7949(90)90142-O
https://doi.org/10.1016/0045-7949(90)90142-O
Debonding at the interfaces between the matrix and the material inclusions in composites is strongly nonlinear and is the main cause of the nonlinear behaviour of composite materials. The main difficulty in solution of debonding problems is that one does not know a priori the contact and noncontact regions and this inherent high nonlinearity prevents the effective use of a classical structural analysis approach. These problems are usually formulated as variational inequality problems which in the case of elastic matrix-elastic (or rigid) inclusion problems are equivalent to certain inequality constrained quadratic programming problems. Clear distinction is made between lubricated and non-lubricated interfaces, i.e. free and zero tangential sliding, respectively, and algorithms for both cases are given. These problems are solved by means of an appropriately modified optimization algorithm. The influence of some material parameters on debonding is shown.