Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Neural network assisted crack and flaw identification in transient dynamics

Stavroulakis Georgios, Engelhardt, Markus, 1956-, Gallegos, Rómulo, 1884-1969, Likas, A, antes horst

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/FD344BBC-B9D0-4780-8C62-8F2FB557F201
Έτος 2004
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά G.E. Stavroulakis, M. Engelhardt, A. Likas, R. Gallego, H. Antes ,"Neural network assisted crack and flaw identification in transient dynamics ," J. of Theor. and Ap. Mech.,vol. 42, no.3 pp.629-649.2004.
Εμφανίζεται στις Συλλογές

Περίληψη

Crack and flaw identification problems in two-dimensional elastomechanics are numerically studied in this paper. The mechanical modelling is based on boundary element techiques, with special care of hypersingular issues for the cracks. The possibility of partially or totally closed cracks (unilateral contact effects) is taken into account by linear complementarity techniques. Backpropagation neural networks are used for the solution of the inverse problems. For dynamical problems, a suitable preprocessing of the input data enhances the effectiveness of the procedure. For the two-dimensional examples presented here, the proposed method has similar performance for classical crack and flaw identification problems. The identification of unilateral cracks is a considerably more difficult task, which nevertheless, can also be solved by the same method, provided that a suitable dynamical test loading is applied.

Υπηρεσίες

Στατιστικά