Το έργο με τίτλο Nonlinear time spectral analysis for a dynamic contact model with buckling for an elastic plate από τον/τους δημιουργό/ούς Stavroulakis Georgios, A. D. Muradova διατίθεται με την άδεια Creative Commons Αναφορά Δημιουργού 4.0 Διεθνές
Βιβλιογραφική Αναφορά
A. D. Muradova, G. E. Stavroulakis, "Nonlinear time spectral analysis for a dynamic contact model with buckling for an elastic plate", Key Eng. Materials, vol. 618, pp. 227-239, Jul. 2014.doi: 10.4028/www.scientific.net/KEM.618.227
https://doi.org/ 10.4028/www.scientific.net/KEM.618.227
In the present paper a dynamic nonlinear model with contact and buckling for an elasticplate is considered. The model consists of two coupled nonlinear hyperbolic type partial differentialequations. The plate is subjected to compressive and/or tensile moving loads on its edges. The foundationsare nonlinear elastic Winkler and Pasternak models. The initial-boundary value problems forthe model are solved with the use of the time spectral method for spatial discretization and after thediscretization the Newmark- time-stepping iterative scheme for the obtained system of nonlinear ordinarydifferential equations. The model is tested for the Winkler-type and shear Pasternak-type andas well for several values of the physical constants of the foundations.