Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

On exact convergence of the accelerated overrelaxation method when applied to consistently ordered systems

Saridakis Ioannis, Kössing, Joseph, 1804-1891

Full record


URI: http://purl.tuc.gr/dl/dias/24687377-9EFC-4BE2-BBA1-FB94292F8FA6
Year 1990
Type of Item Peer-Reviewed Journal Publication
License
Details
Bibliographic Citation Y. G. Saridakis, J. P. Kossin, “On exact convergence of the accelerated overrelaxation method when applied to consistently ordered systems," Int. J. Computer Math ,vol.33, no.3-4 ,pp 251- 261, 1990.doi:10.1080/00207169008803855 https://doi.org/10.1080/00207169008803855
Appears in Collections

Summary

The problem of determining the exact regions of convergence and divergence of the block Accelerated Overrelaxation (AOR) iterative method, when it applies to systems with a Generalized Consistently Ordered (GCO) coefficient matrix, is addressed here. Some new algebraic results in the theory of regular splittings are obtained and used for the determination of extended regions of convergence. Complementary, in some cases, divergence regions are obtained by making use of a recently derived eigenvalue functional equation.

Services

Statistics