Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

The sparse principal component of a constant-rank matrix

Asteris Megasthenis, Papailiopoulos, D.S, Karystinos Georgios

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/13F9D7BC-B98C-40E2-9705-5E257B3D5EFE
Έτος 2014
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά M. Asteris, D. S. Papailiopoulos, and G. N. Karystinos, "The sparse principal component of a constant-rank matrix," IEEE Transactions on Information Theory,vol. 60, no. 4, pp. 2281 - 2290, Apr. 2014. doi: 10.1109/TIT.2014.2303975 https://doi.org/10.1109/TIT.2014.2303975
Εμφανίζεται στις Συλλογές

Περίληψη

The computation of the sparse principal component of a matrix is equivalent to the identification of its principal submatrix with the largest maximum eigenvalue. Finding this optimal submatrix is what renders the problem NP-hard. In this paper, we prove that, if the matrix is positive semidefinite and its rank is constant, then its sparse principal component is polynomially computable. Our proof utilizes the auxiliary unit vector technique that has been recently developed to identify problems that are polynomially solvable. In addition, we use this technique to design an algorithm which, for any sparsity value, computes the sparse principal component with complexity O(ND+1), where N and D are the matrix size and rank, respectively. Our algorithm is fully parallelizable and memory efficient.

Υπηρεσίες

Στατιστικά