Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Hierarchical clustering in medical document collections: the BIC-Means method

Chourdakis Nikolaos, Argyriou Michail, Petrakis Evripidis, Milios, EE

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/17DCC89C-2934-40EF-889D-72322B31E904
Έτος 2010
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά Nikos Hourdakis, Michalis Argyriou, Euripides G.M. Petrakis, Evangelos Milios, "Hierarchical Clustering in Medical Document Collections: the BIC-Means Method" , Journal of Digital Information Management(JDIM), Vol. 8, No. 2, pp. 71-77, April. 2010. http://www.scopus.com/inward/record.url?eid=2-s2.0-79960667355&partnerID=40&md5=87c5599ab55c27b1d1ae1f1f2e76cd6b
Εμφανίζεται στις Συλλογές

Περίληψη

Hierarchical clustering of text collections is a key problem in document management and retrieval. In partitional hierarchical clustering, which is more efficient than its agglomerative counterpart, the entire collection is split into clusters and the individual clusters are further split until a heuristicallymotivated termination criterion is met. In this paper, we define the BIC-means algorithm, which applies the Bayesian Information Criterion (BIC) as a domain independent termination criterion for partitional hierarchical clustering. We evaluate the effectiveness of BIC-means in clustering and retrieval on medical document collections and we propose a dynamic version of the BIC-Means algorithm for adapting an existing clustering solution to document additions.

Υπηρεσίες

Στατιστικά