Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

Discrete artificial bee colony optimization algorithm for financial classification problems

Marinakis Ioannis, Marinaki Magdalini, Zopounidis Konstantinos, Matsatsinis Nikolaos

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/D0AAC748-5349-4413-97C1-0B1467A873A3
Έτος 2011
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά Y. Marinakis, M. Marinaki, N. Matsatsinis , C. Zopounidis, "Discrete artificial bee colony optimization algorithm for financial classification problems, "Intern. J.of Applied Metah. Computing,vol. 2,no. 1, pp. 1-17, 2011.doi:10.4018/jamc.2011010101 https://doi.org/10.4018/jamc.2011010101
Εμφανίζεται στις Συλλογές

Περίληψη

Nature-inspired methods are used in various fields for solving a number of problems. This study uses a nature-inspired method, artificial bee colony optimization that is based on the foraging behaviour of bees, for a financial classification problem. Financial decisions are often based on classification models, which are used to assign a set of observations into predefined groups. One important step toward the development of accurate financial classification models involves the selection of the appropriate independent variables (features) that are relevant to the problem. The proposed method uses a discrete version of the artificial bee colony algorithm for the feature selection step while nearest neighbour based classifiers are used for the classification step. The performance of the method is tested using various benchmark datasets from UCI Machine Learning Repository and in a financial classification task involving credit risk assessment. Its results are compared with the results of other nature-inspired methods.

Υπηρεσίες

Στατιστικά