Ιδρυματικό Αποθετήριο
Πολυτεχνείο Κρήτης
EN  |  EL

Αναζήτηση

Πλοήγηση

Ο Χώρος μου

On the numerical stability and accuracy of the conventional recursive least squares algorithm

Liavas Athanasios, Regalia, Phillip A., 1962-

Πλήρης Εγγραφή


URI: http://purl.tuc.gr/dl/dias/7036A014-C082-4746-9231-7B30F81ACBCD
Έτος 1999
Τύπος Δημοσίευση σε Περιοδικό με Κριτές
Άδεια Χρήσης
Λεπτομέρειες
Βιβλιογραφική Αναφορά A. P. Liavas ,P. A. Regalia, “On the numerical stability and accuracy of the conventional RLS algorithm,” IEEE Trans. Signal Proc., vol. 47, no. 1, pp. 88–96, Jan.1999.doi:10.1109/78.738242 https://doi.org/10.1109/78.738242
Εμφανίζεται στις Συλλογές

Περίληψη

We study the nonlinear round-off error accumulation system of the conventional recursive least squares algorithm, and we derive bounds for the relative precision of the computations in terms of the conditioning of the problem and the exponential forgetting factor, which guarantee the numerical stability of the finite-precision implementation of the algorithm; the positive definiteness of the finite-precision inverse data covariance matrix is also guaranteed. Bounds for the accumulated round-off errors in the inverse data covariance matrix are also derived. In our simulations, the measured accumulated roundoffs satisfied, in steady state, the analytically predicted bounds. We consider the phenomenon of explosive divergence using a simplified approach; we identify the situations that are likely to lead to this phenomenon; simulations confirm our findings

Υπηρεσίες

Στατιστικά