Το έργο με τίτλο A genetically optimized neural classifier applied to numerical pile integrity tests considering concrete piles από τον/τους δημιουργό/ούς Protopapadakis Eftychios, Schauer Marco, Pierri Erika, Doulamis Anastasios, Stavroulakis Georgios, Böhrnsen, Jens Uwe, Langer Sabine Christine διατίθεται με την άδεια Creative Commons Αναφορά Δημιουργού 4.0 Διεθνές
Βιβλιογραφική Αναφορά
E. Protopapadakis, M. Schauer, E. Pierri, A. D. Doulamis, G. E. Stavroulakis, J.-U. Böhrnsen and S. Langer, "A genetically optimized neural classifier applied to numerical pile integrity tests considering concrete piles," Comput. Struct., vol. 162, pp. 68-79, Jan. 2016. doi: 10.1016/j.compstruc.2015.08.005
https://doi.org/10.1016/j.compstruc.2015.08.005
A genetically optimized neural detector is utilized for the identification of structural defects in concrete piles. The proposed methodology is applied on numerically generated data, involving two major defect types. A coupled finite element and scaled boundary finite element method approach is used to model the pile and its surrounding soil. The oscillation patterns, produced on the surface of the pile, depend strongly on the introduced defect type. The proposed defect detection system provides information about the type and the placement of the defect(s), given the surface's oscillation patterns.