Institutional Repository
Technical University of Crete
EN  |  EL

Search

Browse

My Space

Scalable approximate query tracking over highly distributed data streams with tunable accuracy guarantees

Giatrakos Nikolaos, Deligiannakis Antonios, Garofalakis Minos, Keren Daniel, Samoladas Vasilis

Full record


URI: http://purl.tuc.gr/dl/dias/A16D0308-EF61-468D-8B05-3162D819231B
Year 2018
Type of Item Peer-Reviewed Journal Publication
License
Details
Appears in Collections

Summary

The recently proposed Geometric Monitoring (GM) method has provided a general tool for the distributed monitoring of arbitrary non-linear queries over streaming data observed by a collection of remote sites, with numerous practical applications. Unfortunately, GM-based techniques can suffer from serious scalability issues with increasing numbers of remote sites. In this paper, we propose novel techniques that effectively tackle the aforementioned scalability problems by exploiting a carefully designed sample of the remote sites for efficient approximate query tracking. Our novel sampling-based scheme utilizes a sample of cardinality proportional to N (compared to N for the original GM and its variants), where N is the number of sites in the network, to perform the monitoring process. Our extensive experimental evaluation and comparative analysis over a variety of real-life data streams demonstrates that our sampling-based techniques can significantly reduce the communication cost during distributed monitoring with controllable, predefined accuracy guarantees. In that, we manage to scale the monitoring of any given non-linear function on much higher network scales which had not been reached by any GM related method or variant so far.

Services

Statistics